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Abstract 
The aim of this project is to produce the groundwork of a rigid body physics engine specifically for use in games. 
The engine is intended for simulations in two dimensions and code is written in C++. This document will discuss 
the reasoning behind the implementation, including but not limited to the underlying structure, primitive types, 
intersection detection and nonpenetration constraints. The project also aims to show some of the improvements 
made possible by using two dimensions instead of three. 

Copyright Notice 
This document is © 2006 by Anders Ekermo. The entire text or any separate parts of it may be freely duplicated and 
distributed as long as no consideration is received in return. 
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1. Introduction 
This document describes the process in which the 
Rigid Body Physics- Engine Kodo was created. Work 
started around April 2005, and while Kodo will 
hopefully continue to evolve even after this, the 
document only aims to chronicle the process up to 
May 2006. 
 
It should be noted that most of the work on the 
original Kodo (from here on referred to as the “old 
version”) was lost in August 2005. Though the old 
version did not reach the complexity and usability of 
the current Kodo, it was created in a very different 
manner and will sometimes be referred to in this text. 
Of course, since the data no longer exists any such 
references should not be taken as very important 
unless they are backed up with other information. 

1.1. Motive 
Realistic physics is a feature that seems to appear 
more and more in games and middleware today (see 
1.2. Previous Work). As such, it is a rather safe trend to 
follow and since a lot of sales in commercial 
videogames are largely due to “the latest technology”, 
it is really all the reason needed. As Rollings/Adams1 
put it (in the similar context of 3D graphics in 
games), “... ‘because it sells better’ is a valid response. 
It doesn’t mean we have to like it, though.” 
 
Wu/Hilmer2 and Watt/Policarpo3 has some more 
insightful reasons, including: 
Universal rules, everyone intuitively “knows” 
physics so gameplay can be added without requiring 
the player to learn more about the interface. 
Interactivity, since everything is handled by the 
system, more objects can be interactive without 
having to do more work. 
Emergent behaviour, things do not need to be 
explicitly implemented to become possible. Of 
course, this is a double-edged sword as new ways to 
“break” the system appears. 
 
Erleben17 also points out that since computer 
graphics have improved in realism over the years, the 
lack of realism in other areas (such as physics) 
becomes more obvious and irritating. 
 
Most of today’s commercial physics engines focus 
exclusively on 3D environments, a safe choice since 
almost all commercial action games (games where 
real-time physics would be of use) are 3D today. It 
can be assumed, however, that physics would create 
opportunities for innovative and interesting gameplay 
in 2D games as well. Kodo is being made to simplify 
the implementation of such ideas. 

1.2. Previous Work 
There are some notable examples of middleware for 
3D physics simulation, most notably those by Havok4 
and Ageia5. Non-commercial examples include Open 
Dynamics Engine6 and Tokamak Game Physics 
SDK7. 
 

Far too many games use physics to list them all here, 
although some notable examples of games based on 
innovative use of 2D physics include Chroniclogic’s 
Gish8, winner of the Seumas McNally Award for 
Independent Game of the Year at the Independent 
Games Festival in 2005, Mark Haley’s Ragdoll Kung 
Fu9 and a large part of the games in the Experimental 
Gameplay Project10. 

1.4. Structure 
The Kodo API includes template primitive classes, 
rigid bodies sorted after these primitives and 
managers keeping track of the interaction between 
rigid bodies. These classes obey a top-down object-
oriented hierarchy, allowing the programmer to 
decide how much functionality to use without having 
to worry about dependencies. 
 
Since Kodo is intended to be used in games, 
plausibility has been deemed more important than 
exact realism. Design decisions and implementation 
priorities favour stability, scalability and speed before 
mathematically correct solutions and extra features. 

1.5. Acknowledgements 
I owe a great deal of thanks to my co-worker 
Christian Murray who has been very helpful with new 
ideas and reading material – even though he had 
nothing to do with this project. I would also like to 
thank my friend Theodor Berg, who was very helpful 
in proofreading this document.  
 

 
Fig 1: Gish, IGF 2005 Game of the year 

Screenshot used with permission 
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2. Basic Components 
Kodo is created in C++ and all programming work is 
done in Microsoft Visual Studio .net 200311. It is 
created to be used either integrated into a project or 
as an external library, either static or dynamically 
linked. The code of Kodo is written to be open-
platform and has been verified to compile with the 
free compilers Borland C++ Compiler12 and GCC13, 
although this does not necessarily apply to the 
demonstration projects. 

2.1. Code Convention 
Kodo is written using a loose code convention. The 
aim of the convention is to make the code more 
readable, so most rules are considered rules of 
thumb. For example, it is recommended to avoid 
writing lines longer than 100 characters or to omit 
scopes, but in cases where doing this can avoid large 
empty spaces, it should be done anyway. 
 
The naming convention is based on Apps Hungarian 
notation, with notations for the most commonly-
used types. Templates, classes, functions and files are 
all introduced with a similar comment header, no 
external documentation has been written so far but 
should it become needed, it will most likely use these 
headers as reference. Groups of similar functions use 
only one header, and functions implemented in the 
class definition do not have any header. 

2.2. Basic Functionality 
Basic functions are included in Kodo. Many of these 
simply call their respective C equivalent; the point is 
to simplify porting to different platforms by making 
sure all function calls within the kodo namespace are 
equal. 
 
The functions include basic trigonometry and 
memory manipulation functions, additional math 
functions and a few number manipulation functions 
(Clamp, Min/Max, Swap etc). 

2.2.1. The Array 

Kodo has a simple, internal array-class for managing 
semi-dynamic-length lists of data. The array class 
works by keeping a dynamically allocated array that is 
a little longer than what is needed. The class keeps 
track of how much data is currently used, how much 
is allocated and how much to grow it when the 
allocated data is used up. This way, it will reserve a 
little more memory than it actually needs, but the 
average overhead for adding data will be smaller. 

2.3. 2D Space 
Among the base components of Kodo are a couple 
of template classes used to manage 2D geometry, a 

vector class and a matrix class. A 3D vector class is 
also implemented, but it is currently unused and does 
not contain anything not in the 2D vector class. Note 
that the math classes and primitives are templates, 
but the higher-level functionality of Kodo uses 32-bit 
floating-point variables to represent scalar values. 

2.3.1. The Vector 

Vectors are stored in coordinate form and can be 
used to represent directions or points in 2D space. 
They have all the basic math operators implemented, 
note that the division operators simply multiply the 
values with the reciprocal of the divisor since a 
multiplication operation is usually faster than a 
division. Since this does not work for integer values, 
the functions “SafeDivide” and “SafePostDivide” 
perform “proper” divisions. 

 
The vector class provides a function for quick access 
to the counterclockwise perpendicular vector (Eq 
2.2.). It also implements the dot product and 
perpendicular dot product functions; these are used 
heavily in physics to determine the projection length 
of one vector on another (Eq 2.1.) 

 
Finally, because of the properties of 2D rigid bodies 
(No mirroring or scaling, See 4.1.2. DOF and Body 
Space), it is enough to store the orientation of a rigid 
body with a 2D unit vector, representing 
(Cos(α),Sin(α)) where α is the angle of rotation. The 
vector has functions to transform a vector from one 
orientation to another (Eq 2.3.). 

A┴ = (-AY, AX) 
 

Eq 2.1: Perpendicular vector 
 
 

A · B = AXBX + AYBY 
 

Eq 2.2: Dot product 
 
 

f(A,B) = (A · B, A┴ · B) 
 

Eq 2.3: A oriented with B 

 
 

 
 
 
 
 
 

Fig 2: The Dot Product, simplified 

A 

B 

A · B 
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2.3.2. The Matrix 

The Matrix class represents a 3×2 matrix used to 
create affine transformations in 2D space. It is quite 
similar to the vector in that it implements basic 
operators and the “SafeDivide” functions. 
 
The matrix has some basic math functions for using 
matrices in transformations, but since the extra 2 
scalars are not needed in rigid body transformations, 
it is largely unused in the Kodo core functionality. 

3. Intersection 
To have any kind of interaction between bodies, 
being able to determine their relationship to each 
other is necessary, at the very least if they are 
intersecting or not.  
 
Ericsson14 defines collision detections as a matter of 
finding if, when and where two objects collide. For 
reasons discussed in 4.2.2. Simulation, finding the time 
of collision can be omitted. 

3.1. Primitives 
To model anything other than particles, some way of 
defining the area occupied by a rigid body is needed. 
Wu/Hilmer2 suggests using either Convex Hull 
Unions, Sphere collections (which would really be a 
degenerate convex hull union) or simply using the 
mesh (which, in a 2D world, would usually mean 
using the sprite). Baltman/Radeztsky24 use a method 
with particles bound together with constraints, an 
interesting method though not exactly the aim of this 
project. 
 
Using spheres only is a solution that is beautiful in its 
simplicity and allows itself for space partitioning 
trees. However, it is not very intuitive for complex 
models and can easily consume a lot of memory. 
Using the display data (sprite or mesh) is probably 
the most intuitive solution. It requires no extra 
memory and is very easy to comprehend for non-
programmers, although the display data is very 
seldom optimized for collision detection. Also, 
extracting additional information from a collision (for 
example where the collision originally took place) 
proves difficult, and more often than not, it is desired 
to keep the collision and display data apart. 
 
This leaves the convex hull unions, somewhat of a 
middle ground between the two previous ones, and 
the favoured solution of most middleware physics 
engines. The main benefits of using convex 
primitives to represent a body are that they use 
relatively little information and are intuitive, while 
still being developed for fast and precise collision 
detection. The main drawback is that the complexity 
of the individual intersection detection methods is 

increased, but since the simulation takes place in only 
two dimensions, it is still kept simple. 
 
All primitives are made into template classes to 
achieve maximum reusability.  

3.1.1. Circle 

The circle is a 2-dimensional version of the 3-
dimensional sphere. It is defined as a center point 
and a radius. 

3.1.2. AABB 

The Axis-Aligned Bounding Box [AABB] is a 
rectangle aligned to the principal axes, defined by a 
center point and a dimension vector holding the half 
width/height. Since it cannot rotate, it cannot be 
used for rigid bodies (see 4.1.2. DOF and Body-space), 
but it can be valuable as bounding volume as 
collision detection is usually very simple. 

3.1.3. OBB 

The Oriented Bounding Box [OBB] is a rectangle 
with arbitrary orientation. The orientation is defined 
by a unit vector holding the “right” – direction, the 
positive direction of axis 0. 
 
The OBB class contains a method for determining 
the optimal (smallest) bounding box for an arbitrary 
set of points. The method is based on a heuristic 
brute-force algorithm as suggested by Ericsson14, but 
is made a lot simpler since there are only two 
dimensions and three DOF. In simple terms, 
bisection is used to find the orientation angle that will 
produce the smallest possible bounding box. 
 
The dimensions of both the AABB and the OBB 
could be defined as Min/Max instead of 
Center/Dimensions. Especially in the case of 
AABBs, new data is usually presented in this manner 
so it might seem like a better idea – but the collision 
detection usually requires the data to be in the latter 
format. 

3.1.4. Line 

A simple line segment is defined by a start- and 
endpoint. Since it is a degenerate OBB, not much of 
it has been implemented but it will most likely be 
useful if rope physics is needed. 
 
The line is defined as Start/End instead of 
Start/Direction/Length since the data is almost 
always presented that way. It should be noted that 
the old version stored all of the data in one class, but 
not counting the obvious drawbacks of having 
redundant data, re-normalizing the direction vector 
for every new line became expensive. Most 



 
 
 
 
 
 

 - 8 - 
 Anders E Ekermo 2005-2006 
 Gotland University 

intersection methods do not need normalized data 
anyway. 

3.1.5. Plane 

A plane in two dimensions is just a ray cutting the 
space in half. It is defined just like a 3D plane by a 
normal vector and a distance from Origo. This 
primitive is used for defining the sides of a convex 
polygon. 

3.1.6. Polygon 

Polygons are collections of arbitrary points forming 
the convex hull. Obviously, they can form the 
closest-fitting bounding volume, but in return they 
have the most expensive intersection tests. 

The polygon class holds an edge count, pointers to 
lists holding the corner points (in counterclockwise 
order) and edge planes, and a boolean indicator of 

whether it owns the memory used for the lists or not. 
The points and planes are stored in local-space, 
described in 4.1.2. DOF and Local Space. Like the 
OBB, it also holds a position and an orientation. 
These could be deemed unnecessary as the points 
themselves could simply be stored in world-space at 
all times. It is, however, usually more effective to 
convert the other primitive in the intersection test- 
pair to the polygon’s local space than to convert 
them both to world-space. Also, a simple operation 
like moving or rotating the polygon would be a lot 
more expensive if every point needed to be 
individually  transformed. 
 
Seeing as any points can be entered in the polygon, 
some way of making sure it is convex is needed. 
Archimedes originally pointed out that any two 
points in a convex body can be connected with a line 
that does not move the body. With this in mind, 
determining if a body is convex is a simple matter of 
testing, for each plane defining the body, if every 
point is either behind or on the plane (as mentioned 
by Ericsson14). The convex hull of an arbitrary set of 
points can be found using this idea in a brute-force 
manner. First, any point on the convex hull is 
determined (any endpoint on an axis projection will 
do), then, a line is drawn to every other point in the 
set and the side with no points behind it is added.  
Since Kodo only concerns two dimensions, a simpler 
solution would be to just pick the line with the 
greatest angle in relation to the previous side, but 
extracting the angle might be a more expensive 
procedure than just testing all the points. Ericsson14 
also has a few suggestions for faster procedures, but 
this is not usually done in real-time and optimizing it 
is not necessary. 

3.2. Collision Detection 
Collision is detected between two primitives of the 
same or different types. The kodo namespace holds a 
number of template functions to determine 
intersection between each possible primitive used in 
the rigid bodies. 
 
This section discusses the narrow-phase collision 
detection, the identification of actual collisions 
between pairs of objects. Section 5.1. Sort and Sweep 
talks about broad-phase collision detection, how 
smaller groups of potentially colliding objects are 
identified. 

3.2.1. Separating Axis Algorithm 

The separating axis theorem [SAT], described by 
Gomez21 and Burns/Sheppard19, is a general 
procedure for determining intersection between 
convex objects in n dimensions. When two convex 
objects do not intersect, they can be projected onto 
an axis that shows this separation. In three 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.1: Finding the convex hull; each point is 
evaluated until the original point is reached 
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dimensions, the axes that need to be considered are 
n2 (All normals and all possible cross products), but 
in two dimensions only n axes need to be considered 
(the normals of the primitives).  

The main advantages of using SAT are that the same 
general procedure can be applied to a lot of different 

shapes with effective results, and that it gives a lot of 
opportunities for early-outs. An intuitive solution 
might look for signs of intersection (intersecting 
edges etc.) instead of the other way around, but in 
games, any given pair of objects are more likely to be 
separated than intersecting, and such a solution 
would very seldom be able to exit early. As shown in 
the picture, most objects are culled in the first or 
second SAT test. 
 
Ericsson14 and others suggest using temporal 
coherence to speed up the search for the separating 
axis. This is not done in Kodo since it would require 
extra storage space and more processing even for 
simple tests, and since the number of potential 
separating axes is much lower in 2D, it is unlikely that 
exploiting the stiffness of a system will speed it up a 
lot. If an implementation uses a lot of high-
complexity primitives (that is, polygons), temporal 
coherence might be useful. 

3.2.2. Circle tests 

Burns/Sheppard19 points out that since circles have a 
theoretically infinite number of sides, SAT cannot be 
used as-is. It is possible to use the axes created by 
using the circle’s center and the corners of the 
polygon, but this is an overly complex procedure for 
such a simple shape. 
 
James Arvo22 developed a different method for 
sphere-box testing. The function works by measuring 
the distance from the circle center to the closest 
point of the box and comparing this to the radius of 
the circle. This distance is easily measured by 
checking for each axis the distance from the circle 
center to the box’s side – and then using Pythagoras’ 
Theorem to compute the actual distance. 
 

A similar method can be used in circle-polygon 
testing. Instead of testing every axis formed by the 
circle center and a point of the polygon, it is enough 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig 3.2: SAT eliminates most possible collisions 

early and difficult cases later on 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.3: Arvo’s Algorithm does a separation test 
for each axis 
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to find the side with the largest distance to the circle 
center and test that for intersection. 

3.2.3. Polygons and SAT 

As previously mentioned, polygons have the most 
expensive intersection tests since they are the most 
flexible primitives. Though a straightforward SAT 
works fine, it can quickly become expensive when the 
side count rises. The main problem is quickly finding 
the extreme vertex when the polygon is projected on 
an axis. 
 
Ericsson14 has a few suggestions, including a Dobkin-
Kirkpatrick hierarchy and hillclimbing, a simple 
heuristic algorithm. The Dobkin-Kirkpatrick 
hierarchy works by starting out from a simplex (a 
triangle, in this case) and finding the “correct” vertex 
in increasingly complex shapes until the original 
polygon is reached. Hillclimbing works by simply 
traversing the edge of the polygon to find the point 
where both neighbours have a smaller projected 
distance. 
 
As Kodo is 2D it does not need a very complex 
solution, Hillclimbing is used since it is very 
straightforward. The Dobkin-Kirkpatrick hierarchy 
has the benefit of working in near-constant time for a 
given object, but it requires extra storage space per 
primitive. 

 
A helper method exists in the polygon to optimize its 
composition, it is meant for automatic pre-processing 
of input data and not real-time usage. The method 
arranges the polygon in such a way so that the corner 
with the sharpest angle (i.e. the vertex most likely to 
be the extreme vertex) is always examined first. The 
method also uses the optimal-OBB method to find 
the orientation that will produce the smallest AABB 
when the polygon is un-oriented, since the AABB is 
used in broad-phase testing (see 5.1. Sort and Sweep) 

3.3. Intersection Information 
When processing physics, typically a lot more 
information is needed than whether two objects 
collide or not. As most of this information is readily 
available when performing the actual intersection 
test, it is better to store it then than trying to find it 
again later. 
 
The information is stored in a template class and 
extracted in the aforementioned test functions. To 
avoid wasting time writing unnecessary data, nothing 
is written until a collision has been confirmed. 

3.3.1. Normal 

The collision normal is the normal of the surface 
with the least projection, always directed from the 
first body towards the second. The normal is needed 
for several collision handling reasons, but it also 
represents the best axis for separating the bodies. 

3.3.2. Points and Depths 

The point of intersection and intersection depth can 
easily be extracted since they, like the normal, are by-
products of the Separating Axis Algorithm. For 
simplicity, the primary intersection point is always the 
corner with the deeper projection along the normal. 
 
Any collision between two objects will be a 
vertex/vertex, side/vertex or side/side. In the case of 
a side/side collision, the single intersection point gets 
replaced by a line segment. Catto23 describes a 
method of extracting the contact area in 3 
dimensions; this method can be simplified and used 
in 2 dimensions. After the normal and the primary 
intersection point has been found, the neighbouring 
point is checked to see if it is clipped by the 
separating axis. If it is, the collision is marked as just 
having a single intersection point, otherwise the point 
is clipped to the rest of the polygon and the resulting 
point is considered the second end of the contact 
area. The primary contact point is always the first 
one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.4: Hillclimbing works since only one vertex 
can be closer than both of its neighbours 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3.5: The intersection point might appear 

outside of one of the bodies 
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The primary contact point is always a corner of one 
of the bodies. This can create problems with 
tunnelling (objects moving through each other due to 
infrequent collision testing) as illustrated in Fig 3.5. 
The problem can be minimized by treating all such 
collisions as single-point, since the abovementioned 
algorithm can create strange results if the original 
point is not inside both of the bodies. Should it prove 
to be a big problem, it would be wiser to treat the 
tunnelling problem instead of cluttering the 
intersection detection with additional tests.  

4. Rigid Body Dynamics 
While the primitive intersection functions are the 
tools for building them, the rigid bodies and the 
classes that manage them are the core of the rigid 
body physics engine.  
 
Dynamics, the study of the effects of forces and 
masses causing kinetic energy to change, is what 
separates physical simulations from more 
“traditional” collision methods. By using Newtonian 
physics instead of arbitrary methods on in-game 
objects to control movement, simulating conditions 
similar to the real world becomes an emergent feature 
of the system. 

4.1. Rigid Bodies 
A rigid body is, quite simply, a body that does not 
deform. In the real world, true rigid bodies do not 
exist, but in simulation they are very useful; if the 
shape of a body is considered constant, only the 
movement of the body needs to be taken into 
account. This might seem like a big limitation at first, 
but complex objects can be modelled by tying several 
rigid bodies to each other with different methods, 
and the rigid body model is actually very flexible. 
 
All rigid bodies have some form of volume and a 
collection of properties that determines how the rigid 
body reacts to forces. These properties and related 
functions are stored in a base class – however, since 
the volume may have any of the different shapes 
mentioned in part 2.1. Intersections, subclasses are 
made for each type. It might seem un-intuitive to let 
the body “be” a volume instead of “having” it, but to 
do this the body would have to have either redundant 
data or a dynamic primitive container. Arguably, 
neither is a prettier solution and both are 
computationally slower. 

4.1.1. The Rigid Body State 

The rigid body state is defined according to Baraff18 
as the body’s position [X] and orientation [R], linear 
velocity [v] and angular (rotational) velocity [ω]. Since 
the state needs to be cached and restored, these 

properties are put in an internal class in the rigid 
body, a “current” and a “cached” object is created. 
 
The Position is a 2D vector and defines the position 
of the rigid body’s center of mass [XC]. Considering 
the rigid body as a collection of particles, the center 
of mass is the mean position of these particles [ri] 
weighted by their individual masses [mi] and divided 
by the total mass [M] (Eq 4.1.). Thus, in a symmetric 
rigid body with evenly distributed mass, the center of 
mass would be in the exact center of the body. 

 
The Linear Velocity is also a 2D vector and defines 
the change in position of the center of mass in a 
single unit of time. 
 
The Orientation of the body is yet another 2D 
vector and it defines how the body is rotated around 
the center of mass, containing the direction of the 
”right”, or positive direction on axis 0, of the rigid 
body. 
 
Finally, the Angular velocity of the object is a scalar 
defining how many radians it will rotate around the 
center of mass in a single unit of time. Since the 
orientation is a vector, it might seem unnecessary to 
perform two expensive trigonometric functions every 
time the system is updated. The angular velocity 
represents the arc-length of the rotation and needs to 
be a scalar for simplicity, flexibility and stability. 
While it might seem like a good idea to store the 
orientation as a scalar as well, it is needed in vector 
form for most intersection queries and, in a graphical 
implementation, for presentation. 

 
Baraff18 advocates storing the linear [P] and angular 
[L] momentum (Eq 4.2. and 4.3.) instead of storing 
velocities. These are constant in a closed system (as 
implied by Newton’s first law of motion) and provide 
a better relation to Newton’s second law of motion 
(Eq 4.4.), but velocities must be extracted adding an 
extra step to moving a body. In a game, it is unlikely 

XC  = 
Σmiri  

M 
 

Eq 4.1: The center of mass 

P = Mv 
 

Eq 4.2: Linear Momentum 
 
 

L = Iω 
 

Eq 4.3: Angular Momentum 
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that a completely closed system will be treated and 
having easy access to velocity is arguably more 
important than having easy access to momentum. 

 
Note that since position and orientation exists in all 
bodies, the actual primitive objects are not stored in 
the rigid body objects. Instead, the subclasses hold 
the extra information needed for each primitive type 
and creates the primitive on demand. 

4.1.2. DOF and Body Space 

As previously mentioned a rigid body can move 
around freely in two dimensions and rotate around its 
center of mass. Since a rigid body cannot deform, the 
points in it have a fixed relation to each other and are 
stored in “local space”, or “body space” – the center 
of mass is considered Origo and the axes are the 
orientation and its perpendicular vector. 
 

Chasles’ Theorem (Hecker16) breaks up motion into 
linear and angular components this way, and the 
velocity of a point [vi] in a rigid body can be 
calculated by adding the linear velocity to the 
perpendicular vector of the point’s relative position 
multiplied by the angular velocity (Eq 4.5.). 
 

The Degrees of Freedom [DOF] determines in how 
many ways a body is free to move. In two 
dimensions, the body can be moved up/down or 
left/right and rotated, making 3 DOF. A three-
dimensional rigid body can move in three directions, 

but it can also rotate in three dimensions instead of 
one, so it has a total of six DOF and needs to store 
an axis of rotation as well as the angular velocity and 
orientation. 

4.1.3. Forces and Torques 

Forces [F] and Torques [τ] are applied according to 
Newton’s second law of motion and its application 
on angular velocity as described by Watt/Policarpo3 
among others (Eq 4.6.). 

 
Since the forces and torques do not immediately 
affect the rigid body state but only its rate of change 
in momentum (written as Mass * Linear Acceleration 
[a] and Inertia [I] * Angular Acceleration [ώ]), they 
are added up and stored in the rigid body. A helper 
function handles adding forces to any point of the 
rigid body, using Chasles’ Theorem to determine the 
added torque. 

4.1.4. Additional types 

A rigid body can be formed from a circle, an OBB or 
a polygon, but it can also be created from a point or a 
combination of these objects, a “compound object”. 
A point-body is only a degenerate sphere, but some 
calculations have been optimized to allow for simple 
handling of particles or other kinds of objects that 
does not need as accurate physics as the others. 
 
Compound objects contain a list of pointers to sub-
objects. The sub-objects are defined by structures 
containing the same kind of data as their rigid body 
counterparts, except in the object-space of the 
compound object. This makes adding a new object 
cheap but removing one relatively expensive, but the 
compound objects are primarily made for creating 
concave objects and not for breakable ones. To 
simplify object “welding” features (like arrows getting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.1: Local space of a rigid body 

F = Ma = Mv' = P' 
 

Eq 4.4: Newton’s 2nd law of 
motion; Force equals the rate of 

change in momentum 

vi = v + ωri┴ 
 

Eq 4.5: Velocity of a point 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.2: Degrees of Freedom in 2D and 3D 

τ = I ώ = Iω' = L' 
 

Eq 4.6: Newton’s 2nd law of 
motion applied to angular velocity 
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stuck in a wall), methods in the compound object 
allow adding primitives as well as other bodies. 
 
Intersections involving compound objects are solved 
by iterating through the sub-objects and testing every 
possible pair for collision. If more than two 
intersection points are found, the two with the 
greatest penetration depths are kept and the collision 
normal is calculated as the average of the two points’ 
normals. This can lead to problems if the normals are 
opposing each other, but it is a problem with the 
rigid body concept and careful design should keep it 
to a minimum. 

4.1.5. Physical Properties 

Besides volume, the rigid body has a collection of 
constant physical properties, for simplicity grouped 
in an internal class of the rigid body. These properties 
(as with volume) do not necessarily have to be 
constant at all times, but as long as they are the rigid 
body will behave the same in similar situations. 
 
The Mass of the object determines its resistance to 
change in linear velocity and the Moment of inertia 
its resistance to change in angular velocity. In three 
dimensions, the inertia depends on the axis of 
rotation and must be stored in matrix form (or 
similar). Since there is only one possible axis of 
rotation in two dimensions, a scalar is enough. As 
will be shown later, both mass and inertia are used 
mostly in divisions so the reciprocals are stored as 
well. Mass can be automatically generated by 
providing the density of the object, and the inertia 
can be generated from the mass and the shape of the 
body.  
 
Inertia, as explained by Watt/Policarpo3, is the “sum 
of the masses of each particle weighted by the square 
of the perpendicular distance to each axis” (Eq 4.7.). 
A few methods for calculating the inertia of 
symmetric homogeneous shapes are provided, but 
the inertia of arbitrary shapes (polygons, compounds) 
can be estimated by evaluating a sample of evenly 
distributed particles in the body. Since a lot of points 

are needed for an accurate value, this procedure can 
become expensive and should not be called in real-
time. 

 
The restitution and static/kinetic friction are 
scalars in the 0..1 interval and determine how much 
energy is lost in a collision. Normally, some kinetic 
energy is converted as objects are deformed in 
collisions, but since rigid bodies do not deform, this 
energy is assumed to be lost completely. As described 
by Burns/Sheppard19, the restitution (or elasticity) 
determines the loss of momentum along the collision 
normal and the friction along the vector 
perpendicular to the collision normal. The static 
friction determines the friction for a resting body and 
the kinetic friction for a moving one. Read more 
about this in 4.3.3. Friction and Restitution. 

4.1.6. System flags 

The rigid body holds a 32-bit bitfield with flags 
defining the body and a 16-bit bitfield with flags 
defining requirements of bodies it can collide with. 
The top 16 bits of the rigid body are reserved by 
Kodo and used for the following things; 
 
LOCK_MOVE and LOCK_ROTATE simply 
prevent the rigid body from moving or rotating. In 
calculations, the mass or the moment of inertia of the 
rigid body is considered to be infinite if the 
respective flag is set. 
 
ENABLED simply determines whether the object is 
enabled or not. A disabled body will not collide with 
other bodies. 
 
RESTING should not be changed by the user as it is 
set and unset by the system when the object enters or 
leaves a resting state. Read more about this in 5.2. 
Resting. The NEVER_REST flag disallows the rigid 
body from ever entering the resting state. 
 
IS_COLLIDING should not be changed by the 
user either. It is cleared by the system in the start of 
the integration function (see 4.2.2.1. Order of 
Processing), and set if the body collides with another 
body. 
 
The final four flags determine how the bottom 16 
flags are compared. An object can be set to “any” 
(any flag will do), “all” (all flags must be present), 
“equal” (all flags and no others) or “no test” (always 
pass). Note that if no flags are set, “any” and “all” 
will fail. Also note that if rigid body A is allowed to 
collide with body B, B should also be allowed to 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.3: Compound object unable to produce 
an average normal 

I = Σmiri
2 

 
Eq 4.7: The moment of Inertia 
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collide with A, otherwise the ordering of the bodies 
will determine if they collide or not, and this may lead 
to unexpected results as the processing order is not 
user-controlled. 

4.1.7. Additional Data 

The rigid body contains a 32-bit integer to hold any 
kind of user data, for example a pointer to the game 
object it is associated with. This user data is never 
read or written by the Kodo engine. 
 
The rigid bodies also hold information about a grown 
version of themselves, the format of this depends on 
the type of the body. This grown version is used to 
determine what other rigid bodies are potentially 
touching the body and to preserve space, no extra 
information is stored in polygon bodies or 
compounds. Instead, the bounding box/bounding 
circle is used. 

4.1.8. Additional Functionality 

A couple of helper methods are included for finding 
the area and testing a point for intersection. These 
are also used in the mass/inertia auto-generation 
methods. To make duplication of rigid bodies easier, 
a virtual “clone” method will create a dynamically 
allocated copy, and another method in the base class 
will duplicate only the state, flags and physical data. 

4.2. Physics Manager 
The rigid bodies hold all information regarding the 
individual objects in the physical simulation, but the 
information about what rigid bodies exist and how 
they interact with each other is contained in the 
Physics Manager. This is the context in which the 
simulation happens and the core of the Kodo physics 
engine. 
 
Due to the hierarchal design, the Rigid bodies 
themselves have no knowledge of the physics 
manager and could potentially be included in several 
physics managers at once. The exception to this 
would be simultaneously running two managers on 
the same bodies in separate threads. The manager 
uses some temporary attributes of the bodies and 
values could become unreliable. 

4.2.1. Basic Structure 

The physics manager holds pointers to the rigid 
bodies it “owns” in a double-linked list. To save time 
and space, the linked list itself is stored in an array 
and the links are 16-bit unsigned integers instead of 
pointers. In order to make sure both adding and 
removing rigid bodies is reasonably fast, the array is 
not re-formed when objects are deleted. Instead, 
another array holds the positions of the unused 
entries. 

The linked list actually has two entry and exit points, 
one for active bodies and one for resting ones. This is 
described further in 5.2. Resting. 
 
The physics manager also has methods for adding 
forces and torques to all of its bodies, or to a subset 
defined by a flag parameter. To simplify adding of 
gravity, it can also add a force multiplied by the 
individual mass of each object. 

4.2.2. Simulation 

Moving a single rigid body in a somewhat physically 
correct manner is a rather trivial task; one simply has 
to integrate the position of the body over a series of 
short timesteps and display the result. Treating a 
collection of rigid bodies quickly introduces some 
problems, mainly that of collisions. By testing for 
intersections at each frame, it is easy to find out if a 
collision has occurred between two rigid bodies 
sometime during the timestep, but not quite so easy 
to know exactly where and when the collision 
occurred. 

 
Using geometry to find the exact solution might be 
possible, but is extremely complicated for anything 
other than the simplest of shapes. Baraff19 and Del 
Palacio20 restore the cached states of the bodies, use 
bisection to find the time of collision within an 
acceptable threshold and process it, they then 
forward the entire system to that time and do it again 
until the entire timestep has been completed.  
 
This method was used in the old version, and while it 
produces accurate results, it has some problems. First 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 4.4: Using bisection to find the time of collision 
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of all, a lot of re-evaluation has to be done every 
frame, causing it to have a very large speed variance. 
Contact forces become harder to compute since the 
error threshold becomes very small, and since 
numerical integration is used, the final state of a body 
actually depends on how many intersections were in 
that frame. The concept of arbitrary threshold values 
is introduced, and the demands on initial conditions 
are higher – if bodies are already intersecting at the 
start of a frame, it is not possible to find the time of 
collision and left unchecked, this problem will cause 
the system to freeze. 
 
While it may be nice to rest assured that no two 
bodies will ever penetrate each other at the end of 
the frame, this comes at a high cost. As Kenny 
Erleben17 put it, “You may as well recognize that 
penetrations are a way of life. So instead of trying to 
get rid of them, accept that they exist and fix them 
instead.” 
 
With this in mind, the unrealistic properties of rigid 
bodies are compensated with another unrealistic 
property- bodies are allowed to occupy the same 
space. Collisions are handled as they were detected, 
and to prevent objects from sinking through each 
other, they are separated at the end of the frame. This 
design is much more in line with the plausible-rather-
than-realistic- mentality. 

4.2.2.1. Order of Processing 

The entire execution of a timestep is put in a single 
function taking the length of the timestep as a 
parameter, and set of flags allowing the user to 
discard some of the functionality as another. 
 
A straightforward solution would be to integrate the 
velocity and transformation of each particle, process 
collisions, determine contacts and finally separate the 
intersecting bodies. Guendelman et al15 points out 
that this makes threshold values for contact velocities 
needed, and suggests that contact resolution should 
occur in between the velocity and transformation 
updates. Their idea is to build a system that favours 
keeping stable bodies stable over having a fully 
physically correct behaviour at all times. Building on 
this idea, the manager processes the bodies in the 
following order; 
 
Cache the bodies and clear all collision flags. 
 
Forward the bodies in time, regarding both velocity 
and transformation. 
 
Determine collisions. Finding the collisions is a 
geometric problem so the velocity of the body does 
not matter. The collisions are found in the bodies’ 
final states and stored in a list. 
 

Restore velocities to their cached states. Collisions 
are assumed to occur at the start of the timeframe to 
induce stability. As such, the initial velocities are used 
in collision response. 
 
Resolve collisions. All collisions are resolved several 
times, more on this in 4.2.2.2. Iterations. 
 
Forward velocities and do contact calculations. 
Contact is resolved according to Guendelman15, by 
treating active collisions a number of times with zero 
restitution. This will cause unstable objects colliding 
multiple times to settle. In essence, the body is 
extrapolated to see if it strives to settle or not. 
 
Restore transformations and separate bodies that 
are intersecting. 
 
Forward transformations using the new velocities. 
For bodies that are stable, the new velocities should 
have been reduced to zero by the contact calculations 
and the bodies will remain still. 

4.2.2.2. Iterations 

Several iterations are used – when integrating the 
time to forward bodies as well as when processing 
collisions. The numbers of iterations are stored as 
variables in the physics manager so that they can be 
set at run-time. 
 
Since integration is handled numerically, a smaller 
timestep will produce a smaller cumulative error, 
which is why the original timestep is split up and 
processed in smaller parts. Read more about this in 
4.2.2.4. Integration. 
 

Collisions are processed several times due to the 
problem with pairwise collision handling. Consider 
figure 4.5, the bottom box in the stack should apply 
the combined force of the boxes resting on it on the 
block below instead of just the force due to gravity 
and its own mass. As it is now, the box can just as 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
Fig 4.5: A stack of boxes showing the problems 

with pairwise testing 
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easily be pushed away from the side as the topmost 
one. What is worse, since the topmost box descends 
with the same speed as the box below, it will not 
register a collision – in the worst-case scenario, only 
the bottom-most box will. 
 
As mentioned by Guendelman15, a solver considering 
the entire system at once instead of just the individual 
pairs could be more efficient, but processing the 
collisions several times will increase stability as at 
least one new box will be “stopped” with every 
iteration. 
 
Guendelman15 also suggests a shock propagation 
model to stabilize the system before finalizing the 
integration step. A similar model is constructed by 
sorting the collisions and processing them from 
lowest to highest, using zero restitution and treating 
the lower of the two bodies involved in the collision 
as an infinite-mass object with no velocity. This can 
greatly improve stability in a system with a lot of 
stacking, without raising the number of rest iterations 
– but only when gravity is the major force. Also, 
since collisions are not grouped into a contact graph 
as suggested by Guendelman15, the sorting algorithm 
can become unnecessarily expensive when a lot of 
separate stacks are formed. For these reasons, shock 
propagation is disabled by default. 

4.2.2.3. Random ordering 

Another improvement to the pairwise handling 
model is to evaluate collisions in a random order, as 
suggested by Guendelman15. Since collisions change 
the velocities of the bodies, there is an inherent bias 
in the ordering. In order to diminish this bias, a new 
permutation of the collision list is used every time it 
is looped through. 
 
Creating a random permutation can become 
computationally expensive when performed so many 
times per frame; instead the list is iterated using a 
step-size that does not share any factors with the 
total list-size – a semi-random permutation. The step-
size is picked from a list of primes every time a new 
permutation is needed. It being a prime is not 
necessary, though it is simpler to check for divisibility 
since no factors need to be considered. 

4.2.2.4 Integration 

Most formulae in dynamics, including the ones used 
to move rigid bodies, are Ordinary Differential 
Equations [ODE]. The position of a rigid body over 
time, for example, is a function of the velocity – the 
derivative of position, and the velocity is itself a 
function of the acceleration – a derivative of the 
velocity. 
 

Baraff19 describes the process of solving ODEs 
numerically, the simplest way being Euler’s Method 
(Eq 4.8.), in the case of velocity simply adding the 
current velocity multiplied by the length of the 
timestep to the position of the body. He does not 
recommend using Euler; pointing out that it 
accumulates an error as in Fig 4.6. Instead, Baraff19 
advocates providing the ODE solver at runtime. 

 
Guendelman15, on the other hand, suggests that while 
other integration methods are more accurate for 
bodies that do not interact with each other, this 
accuracy is lost in the presence of contact and 
collision. Since Kodo is concerned with interactive 
simulation and more concerned with plausibility and 
stability than accuracy, the safest solution seems to be 
to use smaller step-sizes by iterating the integration, 
and to design around the problems with the Euler-
method. 

4.3. Collision Response 
Collision response is handled by the physics manager, 
and the results are readily available should the user 
wish to have a collision induce additional effects. As 
previously mentioned, collision detection is only 
performed once but collision response is processed 
several times to increase stability in the system by 
allowing stacks of objects to settle. One of Kenny 
Erleben’s17 Seven rules of thumb reads “Get stacking to 
work”, and since environments are simulated rather 
than specific physical cases, having a stable system is 
highly important. 

x(t0+h) = x0 + hx’(t0) 
 

Eq 4.8: Euler’s method for solving 
ODEs numerically 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig 4.6: A centripetal force should keep the body 
at a constant distance from the center; Euler’s 

method will cause it to spiral away 
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4.3.1. The Impulse 

When objects collide, their velocities are changed due 
to applied force. Force only affects acceleration and 
acceleration only affects velocity over time, but 
collisions between rigid bodies occur instantaneously. 
To solve this problem, Baraff18 suggests a quantity 
that produces an immediate change in momentum, 
the impulse [J]. 
 
Baraff18 also writes a formula for the impulse created 
in a collision. Del Palacio20 and Hecker16 explain how 
this works in a two-dimensional environment, the 
impulse being a function of the bodies’ relative 
velocity along the normal [n] in the collision point 
(Eq 4.9.). 

 
The impulse is added to the velocities of each body 
the same way a force is added to the total 
force/torque acting on it, and a separate impulse is 
calculated for each collision point. Should the 
impulse be a negative value, this means the bodies are 
already separating at the contact point and the 
impulse is not applied. 

4.3.2. Collision Information 

Since the denominator of the impulse equation is 
constant as long as the positions and physical 
properties of the bodies do not change, it is 
calculated once and stored in the collision object. 
Also in the collision objects are pointers to the rigid 
bodies, the intersection information (from 3.3. 
Intersection Information) and the other geometric 
information that only has to be calculated once. 
 
This collision object is used by the Physics manager 
in the integration function, but since it can be useful 
for gameplay purposes to have information about the 
collision, it is made accessible to the user. The largest 
applied impulse is also stored in the collision object, 
this is not used by the manager itself but information 
about the “strength” of a collision can be useful for 
example in damage calculations. 

4.3.3. Friction and Restitution 

The coefficient of restitution [ε] or elasticity, 
describes the momentum lost along the collision 
normal, as shown in Eq 4.9. When two rigid bodies 
collide, the smallest value of the two is used as did 
Guendelman15. When doing resting collisions, a 
restitution smaller than 0 is used (as described by 

Guendelman15) to make the bodies slow down rather 
than be repelled or stopped. 
 
The coefficient of friction [µ] describes the loss of 
momentum along the surface, perpendicular to the 
collision normal. Since the impulse created by the 
collision only acts along the surface normal, another 
impulse needs to be created solely for the purpose of 
adding friction. The force due to friction can be 
calculated with Coulomb’s friction law (Eq 4.10.). 

 
Impulses are used instead of forces since the change 
of momentum is instantaneous. The impulse needed 
to nullify all movement perpendicular to the collision 
normal is calculated and compared to the friction 
impulse exerted, using the coefficient for static 
friction. If the friction impulse is larger, the 
movement is nullified, otherwise the impulse is 
computed again using the coefficient of dynamic 
friction. 
 
There are two problems with using the collision 
impulse; first, the impulse is dependent on the 
restitution. Second, the amount of friction added will 
be dependent on the number of collision iterations. 
Since these problems are known, applications can be 
designed around them. 
 

Rolling friction is given a simple treatment as well. 
When a body is rolling across a surface, velocity at 
the contact point will be zero even if it is moving. 
The collision response mechanism detects these cases 
and manipulates the friction impulse with the 
distance from the body’s center to the contact point. 
This is not intended to give a physically correct 
solution, only to make sure that rolling bodies 
eventually comes to a halt. 

 
 
 
 
 
 

Eq 4.9: The impulse 

- (1 + ε)vAB · n 

n · n (      ) +              + 
 1      1 

MA   MB 

(rA┴ · n)
2 
     (rB┴ · n)

2
 

     IA                IB 

J = 

|F µ| = µF · n 

 
Eq 4.10: Coulomb Friction 

 
 Velocity 
 Impulse 
 Friction 
 Restitution 

 
 
 
 
 
 
 
 

Fig 4.7: The collision (scale incorrect) 
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4.3.4. Separation 

Separation is the final step of the collision response. 
The separation depth could be used, but this value 
would become invalid if separation is performed 
several times on a body, so it is recalculated. This is 
not possible for Compound objects since the 
penetration depth is not as easily calculated for 
concave primitives, so the stored penetration depth is 
used instead. This can make compound objects 
unstable in multiple collisions, but the shock 
propagation should keep the penetration to a 
minimum even in these cases. If one of the bodies 
has the LOCK_MOVE – flag set, only the other one 
is moved. 
 
By default, the bodies are not separated completely 
but are allowed some penetration. This is so that the 
collisions will be detected and processed in following 
frames. 

 
It might seem like a bad idea to move bodies an equal 
amount rather than to use the mass or volume ratio 
to determine how much each should move. For 
example, a concrete block sitting on an edge while 
being hit by high-velocity ping-pong balls would not 
be tipped over the edge by the force, but if they were 
to penetrate the block, separation might push it over 
the edge. However, since collisions are processed 
before position is integrated, object separation is only 
really needed when great forces are pushing bodies 
into each other, for example in stacks. In these cases, 
having lighter bodies move more when separated 
would make them sink into the ground if heavier 
bodies were to fall on them. 

5. Optimization 
The methods mentioned so far are more than enough 
to create a reasonably stable rigid body physics 
engine. To maintain quality in a real-time simulation, 
a high number of iterations per second are needed, 
and preferably without putting too much strain on 
the CPU since things like graphics and game logic 
must also be handled. Naturally, this becomes 
difficult as the amount of bodies rise. 
 

In computer graphics, this is usually done by 
streamlining the output data and culling things that 
are not in the current view. While the idea of having 
a clipping box and using less exact – or none at all – 
integration methods for objects outside of it is 
interesting, it will not be treated in this document. 
Instead, the problem with the costly procedures of 
identifying possible collision pairs is considered, the 
broad-phase collision detection. 

5.1. Sort and Sweep 
Ericsson14 suggests sorting the rigid bodies after their 
projection on any or all of the principal axes, and 
then traversing each axis testing only pairs of objects 
that are close to each other. The advantage of this 
solution is that object ordering rarely change much 
between frames, so sorting becomes relatively cheap 
while still allowing us to skip collision tests between 
objects with a large distance to each other. 

 
To simplify sorting, one of the principal axes is used 
at all times. Ericsson14 mentions that in the case 
where only a single axis is used, this can be the 
diagonal as a broader projection is possible, but this 
makes projection more expensive. 
 
In short, the algorithm works by sorting the rigid 
bodies, then adding each body to a temporary list and 
processing them, one by one. When a body is 
processed, it is checked against all other bodies 
currently in the list and bodies not needed anymore 
are removed from the list. 
 
The sort and sweep algorithm has a major drawback 
– it is weak when clusters of objects are handled 
since it cannot cull a lot of collision pairs in these 
cases. Also, since slight movement in the bodies can 
change the order drastically in such situations, sorting 
becomes more expensive. It is therefore advised to 
disable the sorting when environments with only a 
few tight clusters of bodies are handled. 

 
 
 
 
 
 
 
 

 
 

Fig 4.8: Separation 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.1: Sort and sweep- when body C is 
reached, A is removed from further testing 
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5.1.1. Sorting Axis 

When sorting against a single axis only, it is crucial 
that the best axis is used; otherwise the clustering 
problem might be encountered unnecessarily. 
Consider a collection of 10 rigid bodies lying on a flat 
surface. Sorting against the axis perpendicular to the 
surface will yield the maximum 45 tests but testing 
against the surface axis will cull all of them. A simple 
algorithm for determining the axis with the least 
clustering is used, as demonstrated in Fig 5.2. 
 

Each axis is divided into a number of cells; each cell 
in which a body is projected is then tagged. Although 
this algorithm does not take into account different 
sizes of bodies, usually, the axis with the most cells 
tagged will have the largest spread. 
 
The sorting axis is re-evaluated at a constant interval. 
It might seem like a better idea to do this only when 
the amount of collision tests rise above a certain 
limit, but this would put additional strain on the 
system when objects are clustered in both 
dimensions, worsening an already existing bottleneck. 
Since swapping the axis makes the ordering of the 
object completely off, efficiency might be lost in 
sorting if only a few bodies are moving, making one 
axis slightly better one frame and slightly worse the 
next. This is solved by only swapping the axis if the 
new one provides a substantial improvement over the 
old. 
 
Sorting between frames is done with InsertionSort, 
since the algorithm has a very high efficiency for lists 
that are almost sorted. The bodies are sorted after 
their initial projection value along the axis. A 
MergeSort function is also implemented for use when 
sorting after axis switch since it handles completely 
unordered list faster. It might seem like a better idea 
to simply use QuickSort like in the Shock 
Propagation (4.2.2.2. Iterations), but MergeSort is 
more suited for linked lists and has a better worst-
case efficiency. 

5.1.2. Sweeping 

Sweeping is done by creating a temporary single-
linked list with the bodies, and adding and processing 
each body in the Physics Manager. When a new body 
is added, it is tested against each body already in the 
list. If the projections on the sort axis overlap, the 
bodies are tested for intersection, otherwise, the old 
body is removed from the list since no following 
bodies can intersect it, they having a larger minimal 
projection value.  

5.1.3. Threshold 

When adding new bodies to the Physics Manager, a 
linear search determines their position in the list. 
Since there is some overhead to the Sort and Sweep 
algorithm, it is not necessary to use it when there are 
few bodies in the system, and it can be automatically 
switched on and off depending on the body count 
and a threshold value. 
 
The bodies are not sorted when the algorithm is 
turned on, even though a MergeSort would be able to 
create order in a random list faster than 
InsertionSort. The reason for this is that the only 
time this is really an issue is when sorting is turned on 
and off frequently, and in these cases the list will 
probably remain somewhat sorted in between. 

5.2. Resting 
In a normal system with gravity and somewhat 
inelastic ground, bodies will sooner or later loose all 
their momentum and come to rest. Such bodies 
move very little – if at all – between frames, and a lot 
of processing can be skipped for them. 
 
Resting bodies in Kodo are tagged with the 
RESTING flag, so a body with resting enabled 
cannot be used simultaneously in two different 
Physics Managers. Additionally, the Physics Manager 
Rigid Body list contains two entry points instead of 
one, one for active and one for resting bodies. This 
way, functions that only concern either resting or 
active bodies can be a lot faster since they do not 
need to iterate through as many bodies, and do not 
have to do a flag comparison for each body. 

5.2.1. Kinetic Energy 

To prevent bodies from stopping in mid-air or 
settling in weird positions, it is not enough to 
consider if they are currently immobile, they must be 
immobile for an extended period of time. This can be 
achieved either by setting a threshold value and either 
adding the timesteps of the integration or by simply 
counting the frames. A large timestep might force 
bodies into rest that should have stayed active if they 
had been sampled more times, so counting the 
frames is a safer choice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.2: The largest spread is along the axis 
with the most cells tagged 
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At the end of each frame, the kinetic energy [Wk] (Eq 
5.) of each body is compared to the energy the body 
would have gained from the applied forces and 
torques. If the existing energy is less, the body’s rest 
counter is increased, and if the counter reaches the 
threshold, the object is tagged as resting and moved 
from the “active” list to the “resting” list. If, on the 
other hand, the applied energy is less, the rest counter 
is zeroed. 
 
The problem with resting is to determine a good 
threshold value that will not deactivate bodies that 
are accelerating slowly. Theoretically, it should not 
have any effect on the stability of the system 
(practically, it has a slight effect, see 6.1. Future Work) 
so the only real drawback to having a high value is 
that a too high value negates the purpose of the 
resting concept. 

5.2.2. Collisions and Activation 

Bodies can be activated, or “unsettled”, manually. 
When a resting body is unsettled, it might be 
supporting other bodies resting on it, so it is 
important that nearby bodies are also unsettled. This 
is done in a recursive function that performs 
intersection tests with expanded versions of the rigid 
body primitives. Since the function changes the list 
itself, a temporary list of indices is used to trace 
backwards if the current iterator is activated in a 
lower level of recursion, but in cases where this is not 
enough, it is necessary to start over from the 
beginning of the list. An expensive function, but 
since objects are activated it does not have to be 
called very often. 
 
When two active bodies collide with each other, their 
rest lists are synced to the lowest value of the two to 
make sure all bodies in contact are inactivated at the 

same time. If not, they would just activate each other 
instantly after either becomes deactivated. If an active 
body collides with an inactive one, the resting body is 
simply unsettled. 

6. Conclusion 
This document has provided a somewhat simplified, 
but complete guide to implementing a simple 2D 
rigid body physics engine geared specifically for 
games, by describing the development of the Kodo 
Physics Engine. Simple Euclidian math was 
described, as well as primitives and intersection 
testing. Newtonian physics with rigid body simulation 
using impulses and the propagation model were 
described next, and finally, a couple of optimization 
methods to improve real-time performance. 
 
As Kodo was written for simulation in two 
dimensions rather than three, a lot of operations were 
simplified. Some of these are regarding intersection 
detection, how objects are found to penetrate, but 
the most important one is the step from six to three 
DOF, and the simplification of angular velocities 
when objects are only allowed to rotate around a 
predefined axis. 
 
The Kodo Physics Engine was developed with the 
plausibility-before-reality – reasoning used by 
Guendelman/Bridson/Fedkiw15. Making it possible 
for objects to stack and rest was considered more 
important than having correct movement of mobile 
objects; as such, the physics integration order 
favoured objects that were coming to rest. A stable 
system working in reasonably constant time was 
required. Instead of solving collisions at their exact 
time the entire system was processed only at the end 
of the timestep, and instead of disallowing 
penetration; a separating function was created to 
make the system strive towards a plausible state. 
 
Kodo was created in parts, exposing much of the 
inner workings to allow users to customize it to their 
needs without having to re-write the library. The 
parts in Kodo include the primitive shapes of the 
rigid bodies, the rigid bodies themselves and the 
Physics Manager, the environment in which the 
simulation takes place. The parts are designed to have 
few dependencies, and the user may decide where to 
use existing parts and where to write new code. 
 
A lot of research has been done in the field of real-
time physics; many different solutions exist to even 
the simplest of problems. Kodo as a physics engine 
might become useful in a limited field, but as 
suggested by Erin Catto23, 25, if physics is to be a core 
feature of a game, it is very risky to outsource it. 
Even in the case of Rigid Bodies using convex 
primitives, this text has shown that several decisions 

Wk  = 
M |v|

2
   

2 
 

Eq 5: Kinetic Energy 

 
 
 
 
 
 
 
 
 

Fig 5.3: The body is only slightly off-balance 
so it might not accelerate fast enough to be 

considered active 
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have to be made to shape the engine. The aim with 
Kodo was to produce a general-purpose engine for 
games but as the game design spectrum is broadened, 
many games may well benefit from having a different 
set of priorities in the physics engine. Instead of 
being a fully useable library, Kodo might be useful 
together with this document as an introduction to 
Physical Simulation in real time. 

6.1. Future Work 
The original intention was to release Kodo to the 
public under the LGPL license once it was done. As 
mentioned, research has shown that it is not certain 
whether Kodo would be very usable as a third-party 
library so before this is decided, whether this method 
is overly complicated or not needs to be taken into 
consideration. Regarding the software itself, there are 
several planned improvements following, these will 
hopefully be added in the future. 
 
Physics Manager Interface 
The physics manager class needs to be converted into 
an interface and extended physics managers 
providing support for force systems need to be 
written to make creating such systems more 
streamlined and structured. 
 
Separation Impulses 
With Shock Propagation, the system is somewhat 
stable but separating bodies without adding velocities 
produces movement that is not recognized by the 
system. This in turn creates unreliable results in the 
rest calculations; Catto25 describes procedures for 
using impulses for a lot more things than collisions. 
Separation should not be handled as an external “fix” 
to the system but should use impulses to force bodies 
apart; this would also make stacks more stable faster. 
 
Constraints 
Enforcing Constraints on Bodies is a fundamental 
feature of any Physics Engine; otherwise two bodies 
cannot be connected in any other ways than solid 
object compounds. This can usually be solved with 
penalty forces and springs but these perform very 
poorly with Euler integration. Catto25 describes a 
simple method of implementing pin constraints that 
could probably fit Kodo very well. 
 
Heightmaps 
A more specialised feature, but important for games. 
The heightmap – or “heightfield” – is created in 2 
dimensions as an array containing height values of 
the ground across the simulation area. Since nothing 
can exist below the heightmap, relatively simple 
collision tests can be used for complex terrain. 
 
Frustum culling 
Briefly mentioned in part 5. Optimization, some way of 
only working with a subset of currently “interesting” 

bodies might prove useful. As it is now, this can only 
be achieved by having several different Physics 
Managers. 
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Appendix A: Projects 
These projects were made using the Kodo Physics Engine. Note that not all of them follow the Kodo code 
convention. They have all been developed with Microsoft Visual Studio .net 2003, and unlike the Kodo library, they 
are not guaranteed to compile with other compilers. 

KodoGL 
This project is not really a project in itself, but a static library used by other projects to link Kodo functionality with 
OpenGL and Windows. It is used to perform common rendering tasks such as creating and handling a window, 
loading textures and printing text. It also simplifies rendering of Kodo primitives and rigid bodies. 

Destructoooor! 
This was the first full project developed with Kodo; it is just a demo 
showing some of Kodo’s functionality by allowing the user to drop 
primitives in one of four different scenes. The user is also allowed to 
tweak most of the input parameters regarding the integration, allowing for 
some testing of different situations. It is not meant as a stress test, the 
framerate is locked and the integration timestep is constant. The demo 
shows how shock propagation greatly improves stability even with few 
iterations. It also shows how penetration depth is an issue due to rising 
forces and larger stacks, but how this can be countered with more rest- 
and collision-iterations. 

aPart 
As Kodo was written to enhance gaming experience, aPart was written as 
an experiment to see how a simple game design could benefit from correct 
physics. The game chosen was Breakout, originally developed by Steve 
Wozniak and published by Atari Games26. In the original game, a ball 
travels across the screen bouncing off the top and the sides. On the screen 
are also a number of rectangular blocks, when hit by the ball these 
disappear. The player’s mission is to keep the ball from bouncing off the 
bottom of the screen and to destroy all the blocks, to do this the player 
controls a paddle in the bottom of the screen. 
 
Rollings/Adams1 mentions that when updating classic games, it is 
important to keep the things that made the original game good. For this 

reason, physics-related features are the only things added and the graphics are kept simple. Blocks, when destroyed, 
will fission in different ways and fall off the screen as opposed to simply disappearing. In addition, certain special 
blocks have parts that can be caught by the player, some attach to the paddle and some stick for a second and then fire 
straight up, destroying any blocks immediately above the player. Yet another kind of block fissions into solid parts that 
function as additional balls. 
 
Technically, the original Breakout was very easy to implement due to the access to occurred collisions, compound 
objects and flag-based collision detection. The complexity of the code in aPart comes from the generation of block 
parts and the added features. It should be mentioned that aPart goes against the recommendation of not using the 
KRB_RESTING – flag for gameplay purposes (see 4.1.6. System Flags), but since no other forces can affect the bodies 
than those putting them into unrest, and since resting is not otherwise used in the application, an exception can be 
made. 
 
Design-wise, aPart adds power-ups, obstructions and eyecandy to the breakout concept, as well as unruly balls and 
paddles. These add to the gameplay but increase the complexity of the game, the original concept is relatively 
untouched, with one notable exception. Since everything is controlled by the physics engine, the ball might sometimes 
come to a halt in mid-air if no external forces are acting on it. To solve this problem, a very small gravitational force is 
added to it, but this drastically changes the player’s way of predicting the ball’s path. If aPart was to be extended from 
an experiment into a full game, a better solution to this problem should be thought of. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig A.1: Destructoooor! 

 
 
 
 
 
 
 
 
 
 
 

Fig A.2: aPart 
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Appendix B: Signs and Abbreviations 
 

AABB Axis-Aligned Bounding Box  3.1.2. 

DOF Degrees of Freedom 4.1.2. 

OBB Oriented Bounding Box 3.1.3. 

ODE Ordinary Differential Equation 4.2.2.4. 

SAT Separating Axis Theorem 3.2.1. 

   

[a] Linear Acceleration 4.1.3. 

[ε] Coefficient of Restitution 4.3.3. 

[F] Force 4.1.3. 

[I] Rotational Inertia 4.1.3. 

[J] Impulse 4.3.1. 

[L] Angular Momentum 4.1.1. 

[µ] Coefficient of Friction 4.3.3. 

[M] Mass 4.1.1. 

[n] Normal 4.3.1. 

[P] Linear Momentum 4.1.1. 

[R] Orientation 4.1.1. 

[r] Local Position 4.1.1. 

[τ] Torque 4.1.3. 

[v] Linear Velocity 4.1.1. 

[ω] Angular Velocity 4.1.1. 

[ώ] Angular Acceleration 4.1.3. 

[Wk] Kinetic Energy 5.2.1. 

[X] Position 4.1.1. 
 


