

Author: Anders Ekermo
Bachelor's Thesis in Game Development

Gotland University
Spring 2006

Supervisor: Mikael Fridenfalk

Rigid Body Physics
In 2 Dimensions

 - 2 -
 Anders E Ekermo 2005-2006
 Gotland University

Abstract
The aim of this project is to produce the groundwork of a rigid body physics engine specifically for use in games.
The engine is intended for simulations in two dimensions and code is written in C++. This document will discuss
the reasoning behind the implementation, including but not limited to the underlying structure, primitive types,
intersection detection and nonpenetration constraints. The project also aims to show some of the improvements
made possible by using two dimensions instead of three.

Copyright Notice
This document is © 2006 by Anders Ekermo. The entire text or any separate parts of it may be freely duplicated and
distributed as long as no consideration is received in return.

 - 3 -
 Anders E Ekermo 2005-2006
 Gotland University

Table of Contents

1. Introduction ... 5

1.1. Motive ... 5
1.2. Previous Work... 5
1.4. Structure... 5
1.5. Acknowledgements ... 5

2. Basic Components .. 6

2.1. Code Convention ... 6
2.2. Basic Functionality .. 6
2.2.1. The Array ...6

2.3. 2D Space ... 6
2.3.1. The Vector..6
2.3.2. The Matrix..7

3. Intersection.. 7

3.1. Primitives.. 7
3.1.1. Circle ...7
3.1.2. AABB ...7
3.1.3. OBB...7
3.1.4. Line...7
3.1.5. Plane ...8
3.1.6. Polygon..8

3.2. Collision Detection .. 8
3.2.1. Separating Axis Algorithm ..8
3.2.2. Circle tests ...9
3.2.3. Polygons and SAT..10

3.3. Intersection Information... 10
3.3.1. Normal...10
3.3.2. Points and Depths ...10

4. Rigid Body Dynamics .. 11

4.1. Rigid Bodies .. 11
4.1.1. The Rigid Body State ...11
4.1.2. DOF and Body Space ...12
4.1.3. Forces and Torques ...12
4.1.4. Additional types ..12
4.1.5. Physical Properties ..13
4.1.6. System flags...13
4.1.7. Additional Data ...14
4.1.8. Additional Functionality ..14

4.2. Physics Manager ... 14
4.2.1. Basic Structure ...14
4.2.2. Simulation..14

4.2.2.1. Order of Processing ...15
4.2.2.2. Iterations...15
4.2.2.3. Random ordering ..16
4.2.2.4 Integration..16

4.3. Collision Response .. 16
4.3.1. The Impulse ...17
4.3.2. Collision Information..17
4.3.3. Friction and Restitution ..17
4.3.4. Separation..18

 - 4 -
 Anders E Ekermo 2005-2006
 Gotland University

5. Optimization... 18

5.1. Sort and Sweep ... 18
5.1.1. Sorting Axis..19
5.1.2. Sweeping ...19
5.1.3. Threshold ...19

5.2. Resting.. 19
5.2.1. Kinetic Energy...19
5.2.2. Collisions and Activation...20

6. Conclusion.. 20

6.1. Future Work .. 21

7. References ... 22

Appendix A: Projects .. 24

KodoGL... 24
Destructoooor! ... 24
aPart .. 24

Appendix B: Signs and Abbreviations ... 25

 - 5 -
 Anders E Ekermo 2005-2006
 Gotland University

1. Introduction
This document describes the process in which the
Rigid Body Physics- Engine Kodo was created. Work
started around April 2005, and while Kodo will
hopefully continue to evolve even after this, the
document only aims to chronicle the process up to
May 2006.

It should be noted that most of the work on the
original Kodo (from here on referred to as the “old
version”) was lost in August 2005. Though the old
version did not reach the complexity and usability of
the current Kodo, it was created in a very different
manner and will sometimes be referred to in this text.
Of course, since the data no longer exists any such
references should not be taken as very important
unless they are backed up with other information.

1.1. Motive
Realistic physics is a feature that seems to appear
more and more in games and middleware today (see
1.2. Previous Work). As such, it is a rather safe trend to
follow and since a lot of sales in commercial
videogames are largely due to “the latest technology”,
it is really all the reason needed. As Rollings/Adams1
put it (in the similar context of 3D graphics in
games), “... ‘because it sells better’ is a valid response.
It doesn’t mean we have to like it, though.”

Wu/Hilmer2 and Watt/Policarpo3 has some more
insightful reasons, including:
Universal rules, everyone intuitively “knows”
physics so gameplay can be added without requiring
the player to learn more about the interface.
Interactivity, since everything is handled by the
system, more objects can be interactive without
having to do more work.
Emergent behaviour, things do not need to be
explicitly implemented to become possible. Of
course, this is a double-edged sword as new ways to
“break” the system appears.

Erleben17 also points out that since computer
graphics have improved in realism over the years, the
lack of realism in other areas (such as physics)
becomes more obvious and irritating.

Most of today’s commercial physics engines focus
exclusively on 3D environments, a safe choice since
almost all commercial action games (games where
real-time physics would be of use) are 3D today. It
can be assumed, however, that physics would create
opportunities for innovative and interesting gameplay
in 2D games as well. Kodo is being made to simplify
the implementation of such ideas.

1.2. Previous Work
There are some notable examples of middleware for
3D physics simulation, most notably those by Havok4
and Ageia5. Non-commercial examples include Open
Dynamics Engine6 and Tokamak Game Physics
SDK7.

Far too many games use physics to list them all here,
although some notable examples of games based on
innovative use of 2D physics include Chroniclogic’s
Gish8, winner of the Seumas McNally Award for
Independent Game of the Year at the Independent
Games Festival in 2005, Mark Haley’s Ragdoll Kung
Fu9 and a large part of the games in the Experimental
Gameplay Project10.

1.4. Structure
The Kodo API includes template primitive classes,
rigid bodies sorted after these primitives and
managers keeping track of the interaction between
rigid bodies. These classes obey a top-down object-
oriented hierarchy, allowing the programmer to
decide how much functionality to use without having
to worry about dependencies.

Since Kodo is intended to be used in games,
plausibility has been deemed more important than
exact realism. Design decisions and implementation
priorities favour stability, scalability and speed before
mathematically correct solutions and extra features.

1.5. Acknowledgements
I owe a great deal of thanks to my co-worker
Christian Murray who has been very helpful with new
ideas and reading material – even though he had
nothing to do with this project. I would also like to
thank my friend Theodor Berg, who was very helpful
in proofreading this document.

Fig 1: Gish, IGF 2005 Game of the year

Screenshot used with permission

 - 6 -
 Anders E Ekermo 2005-2006
 Gotland University

2. Basic Components
Kodo is created in C++ and all programming work is
done in Microsoft Visual Studio .net 200311. It is
created to be used either integrated into a project or
as an external library, either static or dynamically
linked. The code of Kodo is written to be open-
platform and has been verified to compile with the
free compilers Borland C++ Compiler12 and GCC13,
although this does not necessarily apply to the
demonstration projects.

2.1. Code Convention
Kodo is written using a loose code convention. The
aim of the convention is to make the code more
readable, so most rules are considered rules of
thumb. For example, it is recommended to avoid
writing lines longer than 100 characters or to omit
scopes, but in cases where doing this can avoid large
empty spaces, it should be done anyway.

The naming convention is based on Apps Hungarian
notation, with notations for the most commonly-
used types. Templates, classes, functions and files are
all introduced with a similar comment header, no
external documentation has been written so far but
should it become needed, it will most likely use these
headers as reference. Groups of similar functions use
only one header, and functions implemented in the
class definition do not have any header.

2.2. Basic Functionality
Basic functions are included in Kodo. Many of these
simply call their respective C equivalent; the point is
to simplify porting to different platforms by making
sure all function calls within the kodo namespace are
equal.

The functions include basic trigonometry and
memory manipulation functions, additional math
functions and a few number manipulation functions
(Clamp, Min/Max, Swap etc).

2.2.1. The Array

Kodo has a simple, internal array-class for managing
semi-dynamic-length lists of data. The array class
works by keeping a dynamically allocated array that is
a little longer than what is needed. The class keeps
track of how much data is currently used, how much
is allocated and how much to grow it when the
allocated data is used up. This way, it will reserve a
little more memory than it actually needs, but the
average overhead for adding data will be smaller.

2.3. 2D Space
Among the base components of Kodo are a couple
of template classes used to manage 2D geometry, a

vector class and a matrix class. A 3D vector class is
also implemented, but it is currently unused and does
not contain anything not in the 2D vector class. Note
that the math classes and primitives are templates,
but the higher-level functionality of Kodo uses 32-bit
floating-point variables to represent scalar values.

2.3.1. The Vector

Vectors are stored in coordinate form and can be
used to represent directions or points in 2D space.
They have all the basic math operators implemented,
note that the division operators simply multiply the
values with the reciprocal of the divisor since a
multiplication operation is usually faster than a
division. Since this does not work for integer values,
the functions “SafeDivide” and “SafePostDivide”
perform “proper” divisions.

The vector class provides a function for quick access
to the counterclockwise perpendicular vector (Eq
2.2.). It also implements the dot product and
perpendicular dot product functions; these are used
heavily in physics to determine the projection length
of one vector on another (Eq 2.1.)

Finally, because of the properties of 2D rigid bodies
(No mirroring or scaling, See 4.1.2. DOF and Body
Space), it is enough to store the orientation of a rigid
body with a 2D unit vector, representing
(Cos(α),Sin(α)) where α is the angle of rotation. The
vector has functions to transform a vector from one
orientation to another (Eq 2.3.).

A┴ = (-AY, AX)

Eq 2.1: Perpendicular vector

A · B = AXBX + AYBY

Eq 2.2: Dot product

f(A,B) = (A · B, A┴ · B)

Eq 2.3: A oriented with B

Fig 2: The Dot Product, simplified

A

B

A · B

 - 7 -
 Anders E Ekermo 2005-2006
 Gotland University

2.3.2. The Matrix

The Matrix class represents a 3×2 matrix used to
create affine transformations in 2D space. It is quite
similar to the vector in that it implements basic
operators and the “SafeDivide” functions.

The matrix has some basic math functions for using
matrices in transformations, but since the extra 2
scalars are not needed in rigid body transformations,
it is largely unused in the Kodo core functionality.

3. Intersection
To have any kind of interaction between bodies,
being able to determine their relationship to each
other is necessary, at the very least if they are
intersecting or not.

Ericsson14 defines collision detections as a matter of
finding if, when and where two objects collide. For
reasons discussed in 4.2.2. Simulation, finding the time
of collision can be omitted.

3.1. Primitives
To model anything other than particles, some way of
defining the area occupied by a rigid body is needed.
Wu/Hilmer2 suggests using either Convex Hull
Unions, Sphere collections (which would really be a
degenerate convex hull union) or simply using the
mesh (which, in a 2D world, would usually mean
using the sprite). Baltman/Radeztsky24 use a method
with particles bound together with constraints, an
interesting method though not exactly the aim of this
project.

Using spheres only is a solution that is beautiful in its
simplicity and allows itself for space partitioning
trees. However, it is not very intuitive for complex
models and can easily consume a lot of memory.
Using the display data (sprite or mesh) is probably
the most intuitive solution. It requires no extra
memory and is very easy to comprehend for non-
programmers, although the display data is very
seldom optimized for collision detection. Also,
extracting additional information from a collision (for
example where the collision originally took place)
proves difficult, and more often than not, it is desired
to keep the collision and display data apart.

This leaves the convex hull unions, somewhat of a
middle ground between the two previous ones, and
the favoured solution of most middleware physics
engines. The main benefits of using convex
primitives to represent a body are that they use
relatively little information and are intuitive, while
still being developed for fast and precise collision
detection. The main drawback is that the complexity
of the individual intersection detection methods is

increased, but since the simulation takes place in only
two dimensions, it is still kept simple.

All primitives are made into template classes to
achieve maximum reusability.

3.1.1. Circle

The circle is a 2-dimensional version of the 3-
dimensional sphere. It is defined as a center point
and a radius.

3.1.2. AABB

The Axis-Aligned Bounding Box [AABB] is a
rectangle aligned to the principal axes, defined by a
center point and a dimension vector holding the half
width/height. Since it cannot rotate, it cannot be
used for rigid bodies (see 4.1.2. DOF and Body-space),
but it can be valuable as bounding volume as
collision detection is usually very simple.

3.1.3. OBB

The Oriented Bounding Box [OBB] is a rectangle
with arbitrary orientation. The orientation is defined
by a unit vector holding the “right” – direction, the
positive direction of axis 0.

The OBB class contains a method for determining
the optimal (smallest) bounding box for an arbitrary
set of points. The method is based on a heuristic
brute-force algorithm as suggested by Ericsson14, but
is made a lot simpler since there are only two
dimensions and three DOF. In simple terms,
bisection is used to find the orientation angle that will
produce the smallest possible bounding box.

The dimensions of both the AABB and the OBB
could be defined as Min/Max instead of
Center/Dimensions. Especially in the case of
AABBs, new data is usually presented in this manner
so it might seem like a better idea – but the collision
detection usually requires the data to be in the latter
format.

3.1.4. Line

A simple line segment is defined by a start- and
endpoint. Since it is a degenerate OBB, not much of
it has been implemented but it will most likely be
useful if rope physics is needed.

The line is defined as Start/End instead of
Start/Direction/Length since the data is almost
always presented that way. It should be noted that
the old version stored all of the data in one class, but
not counting the obvious drawbacks of having
redundant data, re-normalizing the direction vector
for every new line became expensive. Most

 - 8 -
 Anders E Ekermo 2005-2006
 Gotland University

intersection methods do not need normalized data
anyway.

3.1.5. Plane

A plane in two dimensions is just a ray cutting the
space in half. It is defined just like a 3D plane by a
normal vector and a distance from Origo. This
primitive is used for defining the sides of a convex
polygon.

3.1.6. Polygon

Polygons are collections of arbitrary points forming
the convex hull. Obviously, they can form the
closest-fitting bounding volume, but in return they
have the most expensive intersection tests.

The polygon class holds an edge count, pointers to
lists holding the corner points (in counterclockwise
order) and edge planes, and a boolean indicator of

whether it owns the memory used for the lists or not.
The points and planes are stored in local-space,
described in 4.1.2. DOF and Local Space. Like the
OBB, it also holds a position and an orientation.
These could be deemed unnecessary as the points
themselves could simply be stored in world-space at
all times. It is, however, usually more effective to
convert the other primitive in the intersection test-
pair to the polygon’s local space than to convert
them both to world-space. Also, a simple operation
like moving or rotating the polygon would be a lot
more expensive if every point needed to be
individually transformed.

Seeing as any points can be entered in the polygon,
some way of making sure it is convex is needed.
Archimedes originally pointed out that any two
points in a convex body can be connected with a line
that does not move the body. With this in mind,
determining if a body is convex is a simple matter of
testing, for each plane defining the body, if every
point is either behind or on the plane (as mentioned
by Ericsson14). The convex hull of an arbitrary set of
points can be found using this idea in a brute-force
manner. First, any point on the convex hull is
determined (any endpoint on an axis projection will
do), then, a line is drawn to every other point in the
set and the side with no points behind it is added.
Since Kodo only concerns two dimensions, a simpler
solution would be to just pick the line with the
greatest angle in relation to the previous side, but
extracting the angle might be a more expensive
procedure than just testing all the points. Ericsson14
also has a few suggestions for faster procedures, but
this is not usually done in real-time and optimizing it
is not necessary.

3.2. Collision Detection
Collision is detected between two primitives of the
same or different types. The kodo namespace holds a
number of template functions to determine
intersection between each possible primitive used in
the rigid bodies.

This section discusses the narrow-phase collision
detection, the identification of actual collisions
between pairs of objects. Section 5.1. Sort and Sweep
talks about broad-phase collision detection, how
smaller groups of potentially colliding objects are
identified.

3.2.1. Separating Axis Algorithm

The separating axis theorem [SAT], described by
Gomez21 and Burns/Sheppard19, is a general
procedure for determining intersection between
convex objects in n dimensions. When two convex
objects do not intersect, they can be projected onto
an axis that shows this separation. In three

Fig 3.1: Finding the convex hull; each point is
evaluated until the original point is reached

1)

2)

3)

 - 9 -
 Anders E Ekermo 2005-2006
 Gotland University

dimensions, the axes that need to be considered are
n2 (All normals and all possible cross products), but
in two dimensions only n axes need to be considered
(the normals of the primitives).

The main advantages of using SAT are that the same
general procedure can be applied to a lot of different

shapes with effective results, and that it gives a lot of
opportunities for early-outs. An intuitive solution
might look for signs of intersection (intersecting
edges etc.) instead of the other way around, but in
games, any given pair of objects are more likely to be
separated than intersecting, and such a solution
would very seldom be able to exit early. As shown in
the picture, most objects are culled in the first or
second SAT test.

Ericsson14 and others suggest using temporal
coherence to speed up the search for the separating
axis. This is not done in Kodo since it would require
extra storage space and more processing even for
simple tests, and since the number of potential
separating axes is much lower in 2D, it is unlikely that
exploiting the stiffness of a system will speed it up a
lot. If an implementation uses a lot of high-
complexity primitives (that is, polygons), temporal
coherence might be useful.

3.2.2. Circle tests

Burns/Sheppard19 points out that since circles have a
theoretically infinite number of sides, SAT cannot be
used as-is. It is possible to use the axes created by
using the circle’s center and the corners of the
polygon, but this is an overly complex procedure for
such a simple shape.

James Arvo22 developed a different method for
sphere-box testing. The function works by measuring
the distance from the circle center to the closest
point of the box and comparing this to the radius of
the circle. This distance is easily measured by
checking for each axis the distance from the circle
center to the box’s side – and then using Pythagoras’
Theorem to compute the actual distance.

A similar method can be used in circle-polygon
testing. Instead of testing every axis formed by the
circle center and a point of the polygon, it is enough

Fig 3.2: SAT eliminates most possible collisions

early and difficult cases later on

Fig 3.3: Arvo’s Algorithm does a separation test
for each axis

 - 10 -
 Anders E Ekermo 2005-2006
 Gotland University

to find the side with the largest distance to the circle
center and test that for intersection.

3.2.3. Polygons and SAT

As previously mentioned, polygons have the most
expensive intersection tests since they are the most
flexible primitives. Though a straightforward SAT
works fine, it can quickly become expensive when the
side count rises. The main problem is quickly finding
the extreme vertex when the polygon is projected on
an axis.

Ericsson14 has a few suggestions, including a Dobkin-
Kirkpatrick hierarchy and hillclimbing, a simple
heuristic algorithm. The Dobkin-Kirkpatrick
hierarchy works by starting out from a simplex (a
triangle, in this case) and finding the “correct” vertex
in increasingly complex shapes until the original
polygon is reached. Hillclimbing works by simply
traversing the edge of the polygon to find the point
where both neighbours have a smaller projected
distance.

As Kodo is 2D it does not need a very complex
solution, Hillclimbing is used since it is very
straightforward. The Dobkin-Kirkpatrick hierarchy
has the benefit of working in near-constant time for a
given object, but it requires extra storage space per
primitive.

A helper method exists in the polygon to optimize its
composition, it is meant for automatic pre-processing
of input data and not real-time usage. The method
arranges the polygon in such a way so that the corner
with the sharpest angle (i.e. the vertex most likely to
be the extreme vertex) is always examined first. The
method also uses the optimal-OBB method to find
the orientation that will produce the smallest AABB
when the polygon is un-oriented, since the AABB is
used in broad-phase testing (see 5.1. Sort and Sweep)

3.3. Intersection Information
When processing physics, typically a lot more
information is needed than whether two objects
collide or not. As most of this information is readily
available when performing the actual intersection
test, it is better to store it then than trying to find it
again later.

The information is stored in a template class and
extracted in the aforementioned test functions. To
avoid wasting time writing unnecessary data, nothing
is written until a collision has been confirmed.

3.3.1. Normal

The collision normal is the normal of the surface
with the least projection, always directed from the
first body towards the second. The normal is needed
for several collision handling reasons, but it also
represents the best axis for separating the bodies.

3.3.2. Points and Depths

The point of intersection and intersection depth can
easily be extracted since they, like the normal, are by-
products of the Separating Axis Algorithm. For
simplicity, the primary intersection point is always the
corner with the deeper projection along the normal.

Any collision between two objects will be a
vertex/vertex, side/vertex or side/side. In the case of
a side/side collision, the single intersection point gets
replaced by a line segment. Catto23 describes a
method of extracting the contact area in 3
dimensions; this method can be simplified and used
in 2 dimensions. After the normal and the primary
intersection point has been found, the neighbouring
point is checked to see if it is clipped by the
separating axis. If it is, the collision is marked as just
having a single intersection point, otherwise the point
is clipped to the rest of the polygon and the resulting
point is considered the second end of the contact
area. The primary contact point is always the first
one.

Fig 3.4: Hillclimbing works since only one vertex
can be closer than both of its neighbours

Fig 3.5: The intersection point might appear

outside of one of the bodies

 - 11 -
 Anders E Ekermo 2005-2006
 Gotland University

The primary contact point is always a corner of one
of the bodies. This can create problems with
tunnelling (objects moving through each other due to
infrequent collision testing) as illustrated in Fig 3.5.
The problem can be minimized by treating all such
collisions as single-point, since the abovementioned
algorithm can create strange results if the original
point is not inside both of the bodies. Should it prove
to be a big problem, it would be wiser to treat the
tunnelling problem instead of cluttering the
intersection detection with additional tests.

4. Rigid Body Dynamics
While the primitive intersection functions are the
tools for building them, the rigid bodies and the
classes that manage them are the core of the rigid
body physics engine.

Dynamics, the study of the effects of forces and
masses causing kinetic energy to change, is what
separates physical simulations from more
“traditional” collision methods. By using Newtonian
physics instead of arbitrary methods on in-game
objects to control movement, simulating conditions
similar to the real world becomes an emergent feature
of the system.

4.1. Rigid Bodies
A rigid body is, quite simply, a body that does not
deform. In the real world, true rigid bodies do not
exist, but in simulation they are very useful; if the
shape of a body is considered constant, only the
movement of the body needs to be taken into
account. This might seem like a big limitation at first,
but complex objects can be modelled by tying several
rigid bodies to each other with different methods,
and the rigid body model is actually very flexible.

All rigid bodies have some form of volume and a
collection of properties that determines how the rigid
body reacts to forces. These properties and related
functions are stored in a base class – however, since
the volume may have any of the different shapes
mentioned in part 2.1. Intersections, subclasses are
made for each type. It might seem un-intuitive to let
the body “be” a volume instead of “having” it, but to
do this the body would have to have either redundant
data or a dynamic primitive container. Arguably,
neither is a prettier solution and both are
computationally slower.

4.1.1. The Rigid Body State

The rigid body state is defined according to Baraff18
as the body’s position [X] and orientation [R], linear
velocity [v] and angular (rotational) velocity [ω]. Since
the state needs to be cached and restored, these

properties are put in an internal class in the rigid
body, a “current” and a “cached” object is created.

The Position is a 2D vector and defines the position
of the rigid body’s center of mass [XC]. Considering
the rigid body as a collection of particles, the center
of mass is the mean position of these particles [ri]
weighted by their individual masses [mi] and divided
by the total mass [M] (Eq 4.1.). Thus, in a symmetric
rigid body with evenly distributed mass, the center of
mass would be in the exact center of the body.

The Linear Velocity is also a 2D vector and defines
the change in position of the center of mass in a
single unit of time.

The Orientation of the body is yet another 2D
vector and it defines how the body is rotated around
the center of mass, containing the direction of the
”right”, or positive direction on axis 0, of the rigid
body.

Finally, the Angular velocity of the object is a scalar
defining how many radians it will rotate around the
center of mass in a single unit of time. Since the
orientation is a vector, it might seem unnecessary to
perform two expensive trigonometric functions every
time the system is updated. The angular velocity
represents the arc-length of the rotation and needs to
be a scalar for simplicity, flexibility and stability.
While it might seem like a good idea to store the
orientation as a scalar as well, it is needed in vector
form for most intersection queries and, in a graphical
implementation, for presentation.

Baraff18 advocates storing the linear [P] and angular
[L] momentum (Eq 4.2. and 4.3.) instead of storing
velocities. These are constant in a closed system (as
implied by Newton’s first law of motion) and provide
a better relation to Newton’s second law of motion
(Eq 4.4.), but velocities must be extracted adding an
extra step to moving a body. In a game, it is unlikely

XC =
Σmiri

M

Eq 4.1: The center of mass

P = Mv

Eq 4.2: Linear Momentum

L = Iω

Eq 4.3: Angular Momentum

 - 12 -
 Anders E Ekermo 2005-2006
 Gotland University

that a completely closed system will be treated and
having easy access to velocity is arguably more
important than having easy access to momentum.

Note that since position and orientation exists in all
bodies, the actual primitive objects are not stored in
the rigid body objects. Instead, the subclasses hold
the extra information needed for each primitive type
and creates the primitive on demand.

4.1.2. DOF and Body Space

As previously mentioned a rigid body can move
around freely in two dimensions and rotate around its
center of mass. Since a rigid body cannot deform, the
points in it have a fixed relation to each other and are
stored in “local space”, or “body space” – the center
of mass is considered Origo and the axes are the
orientation and its perpendicular vector.

Chasles’ Theorem (Hecker16) breaks up motion into
linear and angular components this way, and the
velocity of a point [vi] in a rigid body can be
calculated by adding the linear velocity to the
perpendicular vector of the point’s relative position
multiplied by the angular velocity (Eq 4.5.).

The Degrees of Freedom [DOF] determines in how
many ways a body is free to move. In two
dimensions, the body can be moved up/down or
left/right and rotated, making 3 DOF. A three-
dimensional rigid body can move in three directions,

but it can also rotate in three dimensions instead of
one, so it has a total of six DOF and needs to store
an axis of rotation as well as the angular velocity and
orientation.

4.1.3. Forces and Torques

Forces [F] and Torques [τ] are applied according to
Newton’s second law of motion and its application
on angular velocity as described by Watt/Policarpo3
among others (Eq 4.6.).

Since the forces and torques do not immediately
affect the rigid body state but only its rate of change
in momentum (written as Mass * Linear Acceleration
[a] and Inertia [I] * Angular Acceleration [ώ]), they
are added up and stored in the rigid body. A helper
function handles adding forces to any point of the
rigid body, using Chasles’ Theorem to determine the
added torque.

4.1.4. Additional types

A rigid body can be formed from a circle, an OBB or
a polygon, but it can also be created from a point or a
combination of these objects, a “compound object”.
A point-body is only a degenerate sphere, but some
calculations have been optimized to allow for simple
handling of particles or other kinds of objects that
does not need as accurate physics as the others.

Compound objects contain a list of pointers to sub-
objects. The sub-objects are defined by structures
containing the same kind of data as their rigid body
counterparts, except in the object-space of the
compound object. This makes adding a new object
cheap but removing one relatively expensive, but the
compound objects are primarily made for creating
concave objects and not for breakable ones. To
simplify object “welding” features (like arrows getting

Fig 4.1: Local space of a rigid body

F = Ma = Mv' = P'

Eq 4.4: Newton’s 2nd law of
motion; Force equals the rate of

change in momentum

vi = v + ωri┴

Eq 4.5: Velocity of a point

Fig 4.2: Degrees of Freedom in 2D and 3D

τ = I ώ = Iω' = L'

Eq 4.6: Newton’s 2nd law of
motion applied to angular velocity

 - 13 -
 Anders E Ekermo 2005-2006
 Gotland University

stuck in a wall), methods in the compound object
allow adding primitives as well as other bodies.

Intersections involving compound objects are solved
by iterating through the sub-objects and testing every
possible pair for collision. If more than two
intersection points are found, the two with the
greatest penetration depths are kept and the collision
normal is calculated as the average of the two points’
normals. This can lead to problems if the normals are
opposing each other, but it is a problem with the
rigid body concept and careful design should keep it
to a minimum.

4.1.5. Physical Properties

Besides volume, the rigid body has a collection of
constant physical properties, for simplicity grouped
in an internal class of the rigid body. These properties
(as with volume) do not necessarily have to be
constant at all times, but as long as they are the rigid
body will behave the same in similar situations.

The Mass of the object determines its resistance to
change in linear velocity and the Moment of inertia
its resistance to change in angular velocity. In three
dimensions, the inertia depends on the axis of
rotation and must be stored in matrix form (or
similar). Since there is only one possible axis of
rotation in two dimensions, a scalar is enough. As
will be shown later, both mass and inertia are used
mostly in divisions so the reciprocals are stored as
well. Mass can be automatically generated by
providing the density of the object, and the inertia
can be generated from the mass and the shape of the
body.

Inertia, as explained by Watt/Policarpo3, is the “sum
of the masses of each particle weighted by the square
of the perpendicular distance to each axis” (Eq 4.7.).
A few methods for calculating the inertia of
symmetric homogeneous shapes are provided, but
the inertia of arbitrary shapes (polygons, compounds)
can be estimated by evaluating a sample of evenly
distributed particles in the body. Since a lot of points

are needed for an accurate value, this procedure can
become expensive and should not be called in real-
time.

The restitution and static/kinetic friction are
scalars in the 0..1 interval and determine how much
energy is lost in a collision. Normally, some kinetic
energy is converted as objects are deformed in
collisions, but since rigid bodies do not deform, this
energy is assumed to be lost completely. As described
by Burns/Sheppard19, the restitution (or elasticity)
determines the loss of momentum along the collision
normal and the friction along the vector
perpendicular to the collision normal. The static
friction determines the friction for a resting body and
the kinetic friction for a moving one. Read more
about this in 4.3.3. Friction and Restitution.

4.1.6. System flags

The rigid body holds a 32-bit bitfield with flags
defining the body and a 16-bit bitfield with flags
defining requirements of bodies it can collide with.
The top 16 bits of the rigid body are reserved by
Kodo and used for the following things;

LOCK_MOVE and LOCK_ROTATE simply
prevent the rigid body from moving or rotating. In
calculations, the mass or the moment of inertia of the
rigid body is considered to be infinite if the
respective flag is set.

ENABLED simply determines whether the object is
enabled or not. A disabled body will not collide with
other bodies.

RESTING should not be changed by the user as it is
set and unset by the system when the object enters or
leaves a resting state. Read more about this in 5.2.
Resting. The NEVER_REST flag disallows the rigid
body from ever entering the resting state.

IS_COLLIDING should not be changed by the
user either. It is cleared by the system in the start of
the integration function (see 4.2.2.1. Order of
Processing), and set if the body collides with another
body.

The final four flags determine how the bottom 16
flags are compared. An object can be set to “any”
(any flag will do), “all” (all flags must be present),
“equal” (all flags and no others) or “no test” (always
pass). Note that if no flags are set, “any” and “all”
will fail. Also note that if rigid body A is allowed to
collide with body B, B should also be allowed to

Fig 4.3: Compound object unable to produce
an average normal

I = Σmiri
2

Eq 4.7: The moment of Inertia

 - 14 -
 Anders E Ekermo 2005-2006
 Gotland University

collide with A, otherwise the ordering of the bodies
will determine if they collide or not, and this may lead
to unexpected results as the processing order is not
user-controlled.

4.1.7. Additional Data

The rigid body contains a 32-bit integer to hold any
kind of user data, for example a pointer to the game
object it is associated with. This user data is never
read or written by the Kodo engine.

The rigid bodies also hold information about a grown
version of themselves, the format of this depends on
the type of the body. This grown version is used to
determine what other rigid bodies are potentially
touching the body and to preserve space, no extra
information is stored in polygon bodies or
compounds. Instead, the bounding box/bounding
circle is used.

4.1.8. Additional Functionality

A couple of helper methods are included for finding
the area and testing a point for intersection. These
are also used in the mass/inertia auto-generation
methods. To make duplication of rigid bodies easier,
a virtual “clone” method will create a dynamically
allocated copy, and another method in the base class
will duplicate only the state, flags and physical data.

4.2. Physics Manager
The rigid bodies hold all information regarding the
individual objects in the physical simulation, but the
information about what rigid bodies exist and how
they interact with each other is contained in the
Physics Manager. This is the context in which the
simulation happens and the core of the Kodo physics
engine.

Due to the hierarchal design, the Rigid bodies
themselves have no knowledge of the physics
manager and could potentially be included in several
physics managers at once. The exception to this
would be simultaneously running two managers on
the same bodies in separate threads. The manager
uses some temporary attributes of the bodies and
values could become unreliable.

4.2.1. Basic Structure

The physics manager holds pointers to the rigid
bodies it “owns” in a double-linked list. To save time
and space, the linked list itself is stored in an array
and the links are 16-bit unsigned integers instead of
pointers. In order to make sure both adding and
removing rigid bodies is reasonably fast, the array is
not re-formed when objects are deleted. Instead,
another array holds the positions of the unused
entries.

The linked list actually has two entry and exit points,
one for active bodies and one for resting ones. This is
described further in 5.2. Resting.

The physics manager also has methods for adding
forces and torques to all of its bodies, or to a subset
defined by a flag parameter. To simplify adding of
gravity, it can also add a force multiplied by the
individual mass of each object.

4.2.2. Simulation

Moving a single rigid body in a somewhat physically
correct manner is a rather trivial task; one simply has
to integrate the position of the body over a series of
short timesteps and display the result. Treating a
collection of rigid bodies quickly introduces some
problems, mainly that of collisions. By testing for
intersections at each frame, it is easy to find out if a
collision has occurred between two rigid bodies
sometime during the timestep, but not quite so easy
to know exactly where and when the collision
occurred.

Using geometry to find the exact solution might be
possible, but is extremely complicated for anything
other than the simplest of shapes. Baraff19 and Del
Palacio20 restore the cached states of the bodies, use
bisection to find the time of collision within an
acceptable threshold and process it, they then
forward the entire system to that time and do it again
until the entire timestep has been completed.

This method was used in the old version, and while it
produces accurate results, it has some problems. First

Fig 4.4: Using bisection to find the time of collision

 - 15 -
 Anders E Ekermo 2005-2006
 Gotland University

of all, a lot of re-evaluation has to be done every
frame, causing it to have a very large speed variance.
Contact forces become harder to compute since the
error threshold becomes very small, and since
numerical integration is used, the final state of a body
actually depends on how many intersections were in
that frame. The concept of arbitrary threshold values
is introduced, and the demands on initial conditions
are higher – if bodies are already intersecting at the
start of a frame, it is not possible to find the time of
collision and left unchecked, this problem will cause
the system to freeze.

While it may be nice to rest assured that no two
bodies will ever penetrate each other at the end of
the frame, this comes at a high cost. As Kenny
Erleben17 put it, “You may as well recognize that
penetrations are a way of life. So instead of trying to
get rid of them, accept that they exist and fix them
instead.”

With this in mind, the unrealistic properties of rigid
bodies are compensated with another unrealistic
property- bodies are allowed to occupy the same
space. Collisions are handled as they were detected,
and to prevent objects from sinking through each
other, they are separated at the end of the frame. This
design is much more in line with the plausible-rather-
than-realistic- mentality.

4.2.2.1. Order of Processing

The entire execution of a timestep is put in a single
function taking the length of the timestep as a
parameter, and set of flags allowing the user to
discard some of the functionality as another.

A straightforward solution would be to integrate the
velocity and transformation of each particle, process
collisions, determine contacts and finally separate the
intersecting bodies. Guendelman et al15 points out
that this makes threshold values for contact velocities
needed, and suggests that contact resolution should
occur in between the velocity and transformation
updates. Their idea is to build a system that favours
keeping stable bodies stable over having a fully
physically correct behaviour at all times. Building on
this idea, the manager processes the bodies in the
following order;

Cache the bodies and clear all collision flags.

Forward the bodies in time, regarding both velocity
and transformation.

Determine collisions. Finding the collisions is a
geometric problem so the velocity of the body does
not matter. The collisions are found in the bodies’
final states and stored in a list.

Restore velocities to their cached states. Collisions
are assumed to occur at the start of the timeframe to
induce stability. As such, the initial velocities are used
in collision response.

Resolve collisions. All collisions are resolved several
times, more on this in 4.2.2.2. Iterations.

Forward velocities and do contact calculations.
Contact is resolved according to Guendelman15, by
treating active collisions a number of times with zero
restitution. This will cause unstable objects colliding
multiple times to settle. In essence, the body is
extrapolated to see if it strives to settle or not.

Restore transformations and separate bodies that
are intersecting.

Forward transformations using the new velocities.
For bodies that are stable, the new velocities should
have been reduced to zero by the contact calculations
and the bodies will remain still.

4.2.2.2. Iterations

Several iterations are used – when integrating the
time to forward bodies as well as when processing
collisions. The numbers of iterations are stored as
variables in the physics manager so that they can be
set at run-time.

Since integration is handled numerically, a smaller
timestep will produce a smaller cumulative error,
which is why the original timestep is split up and
processed in smaller parts. Read more about this in
4.2.2.4. Integration.

Collisions are processed several times due to the
problem with pairwise collision handling. Consider
figure 4.5, the bottom box in the stack should apply
the combined force of the boxes resting on it on the
block below instead of just the force due to gravity
and its own mass. As it is now, the box can just as

Fig 4.5: A stack of boxes showing the problems

with pairwise testing

 - 16 -
 Anders E Ekermo 2005-2006
 Gotland University

easily be pushed away from the side as the topmost
one. What is worse, since the topmost box descends
with the same speed as the box below, it will not
register a collision – in the worst-case scenario, only
the bottom-most box will.

As mentioned by Guendelman15, a solver considering
the entire system at once instead of just the individual
pairs could be more efficient, but processing the
collisions several times will increase stability as at
least one new box will be “stopped” with every
iteration.

Guendelman15 also suggests a shock propagation
model to stabilize the system before finalizing the
integration step. A similar model is constructed by
sorting the collisions and processing them from
lowest to highest, using zero restitution and treating
the lower of the two bodies involved in the collision
as an infinite-mass object with no velocity. This can
greatly improve stability in a system with a lot of
stacking, without raising the number of rest iterations
– but only when gravity is the major force. Also,
since collisions are not grouped into a contact graph
as suggested by Guendelman15, the sorting algorithm
can become unnecessarily expensive when a lot of
separate stacks are formed. For these reasons, shock
propagation is disabled by default.

4.2.2.3. Random ordering

Another improvement to the pairwise handling
model is to evaluate collisions in a random order, as
suggested by Guendelman15. Since collisions change
the velocities of the bodies, there is an inherent bias
in the ordering. In order to diminish this bias, a new
permutation of the collision list is used every time it
is looped through.

Creating a random permutation can become
computationally expensive when performed so many
times per frame; instead the list is iterated using a
step-size that does not share any factors with the
total list-size – a semi-random permutation. The step-
size is picked from a list of primes every time a new
permutation is needed. It being a prime is not
necessary, though it is simpler to check for divisibility
since no factors need to be considered.

4.2.2.4 Integration

Most formulae in dynamics, including the ones used
to move rigid bodies, are Ordinary Differential
Equations [ODE]. The position of a rigid body over
time, for example, is a function of the velocity – the
derivative of position, and the velocity is itself a
function of the acceleration – a derivative of the
velocity.

Baraff19 describes the process of solving ODEs
numerically, the simplest way being Euler’s Method
(Eq 4.8.), in the case of velocity simply adding the
current velocity multiplied by the length of the
timestep to the position of the body. He does not
recommend using Euler; pointing out that it
accumulates an error as in Fig 4.6. Instead, Baraff19
advocates providing the ODE solver at runtime.

Guendelman15, on the other hand, suggests that while
other integration methods are more accurate for
bodies that do not interact with each other, this
accuracy is lost in the presence of contact and
collision. Since Kodo is concerned with interactive
simulation and more concerned with plausibility and
stability than accuracy, the safest solution seems to be
to use smaller step-sizes by iterating the integration,
and to design around the problems with the Euler-
method.

4.3. Collision Response
Collision response is handled by the physics manager,
and the results are readily available should the user
wish to have a collision induce additional effects. As
previously mentioned, collision detection is only
performed once but collision response is processed
several times to increase stability in the system by
allowing stacks of objects to settle. One of Kenny
Erleben’s17 Seven rules of thumb reads “Get stacking to
work”, and since environments are simulated rather
than specific physical cases, having a stable system is
highly important.

x(t0+h) = x0 + hx’(t0)

Eq 4.8: Euler’s method for solving
ODEs numerically

Fig 4.6: A centripetal force should keep the body
at a constant distance from the center; Euler’s

method will cause it to spiral away

 - 17 -
 Anders E Ekermo 2005-2006
 Gotland University

4.3.1. The Impulse

When objects collide, their velocities are changed due
to applied force. Force only affects acceleration and
acceleration only affects velocity over time, but
collisions between rigid bodies occur instantaneously.
To solve this problem, Baraff18 suggests a quantity
that produces an immediate change in momentum,
the impulse [J].

Baraff18 also writes a formula for the impulse created
in a collision. Del Palacio20 and Hecker16 explain how
this works in a two-dimensional environment, the
impulse being a function of the bodies’ relative
velocity along the normal [n] in the collision point
(Eq 4.9.).

The impulse is added to the velocities of each body
the same way a force is added to the total
force/torque acting on it, and a separate impulse is
calculated for each collision point. Should the
impulse be a negative value, this means the bodies are
already separating at the contact point and the
impulse is not applied.

4.3.2. Collision Information

Since the denominator of the impulse equation is
constant as long as the positions and physical
properties of the bodies do not change, it is
calculated once and stored in the collision object.
Also in the collision objects are pointers to the rigid
bodies, the intersection information (from 3.3.
Intersection Information) and the other geometric
information that only has to be calculated once.

This collision object is used by the Physics manager
in the integration function, but since it can be useful
for gameplay purposes to have information about the
collision, it is made accessible to the user. The largest
applied impulse is also stored in the collision object,
this is not used by the manager itself but information
about the “strength” of a collision can be useful for
example in damage calculations.

4.3.3. Friction and Restitution

The coefficient of restitution [ε] or elasticity,
describes the momentum lost along the collision
normal, as shown in Eq 4.9. When two rigid bodies
collide, the smallest value of the two is used as did
Guendelman15. When doing resting collisions, a
restitution smaller than 0 is used (as described by

Guendelman15) to make the bodies slow down rather
than be repelled or stopped.

The coefficient of friction [µ] describes the loss of
momentum along the surface, perpendicular to the
collision normal. Since the impulse created by the
collision only acts along the surface normal, another
impulse needs to be created solely for the purpose of
adding friction. The force due to friction can be
calculated with Coulomb’s friction law (Eq 4.10.).

Impulses are used instead of forces since the change
of momentum is instantaneous. The impulse needed
to nullify all movement perpendicular to the collision
normal is calculated and compared to the friction
impulse exerted, using the coefficient for static
friction. If the friction impulse is larger, the
movement is nullified, otherwise the impulse is
computed again using the coefficient of dynamic
friction.

There are two problems with using the collision
impulse; first, the impulse is dependent on the
restitution. Second, the amount of friction added will
be dependent on the number of collision iterations.
Since these problems are known, applications can be
designed around them.

Rolling friction is given a simple treatment as well.
When a body is rolling across a surface, velocity at
the contact point will be zero even if it is moving.
The collision response mechanism detects these cases
and manipulates the friction impulse with the
distance from the body’s center to the contact point.
This is not intended to give a physically correct
solution, only to make sure that rolling bodies
eventually comes to a halt.

Eq 4.9: The impulse

- (1 + ε)vAB · n

n · n () + +
 1 1

MA MB

(rA┴ · n)
2
 (rB┴ · n)

2

 IA IB

J =

|F µ| = µF · n

Eq 4.10: Coulomb Friction

 Velocity
 Impulse
 Friction
 Restitution

Fig 4.7: The collision (scale incorrect)

 - 18 -
 Anders E Ekermo 2005-2006
 Gotland University

4.3.4. Separation

Separation is the final step of the collision response.
The separation depth could be used, but this value
would become invalid if separation is performed
several times on a body, so it is recalculated. This is
not possible for Compound objects since the
penetration depth is not as easily calculated for
concave primitives, so the stored penetration depth is
used instead. This can make compound objects
unstable in multiple collisions, but the shock
propagation should keep the penetration to a
minimum even in these cases. If one of the bodies
has the LOCK_MOVE – flag set, only the other one
is moved.

By default, the bodies are not separated completely
but are allowed some penetration. This is so that the
collisions will be detected and processed in following
frames.

It might seem like a bad idea to move bodies an equal
amount rather than to use the mass or volume ratio
to determine how much each should move. For
example, a concrete block sitting on an edge while
being hit by high-velocity ping-pong balls would not
be tipped over the edge by the force, but if they were
to penetrate the block, separation might push it over
the edge. However, since collisions are processed
before position is integrated, object separation is only
really needed when great forces are pushing bodies
into each other, for example in stacks. In these cases,
having lighter bodies move more when separated
would make them sink into the ground if heavier
bodies were to fall on them.

5. Optimization
The methods mentioned so far are more than enough
to create a reasonably stable rigid body physics
engine. To maintain quality in a real-time simulation,
a high number of iterations per second are needed,
and preferably without putting too much strain on
the CPU since things like graphics and game logic
must also be handled. Naturally, this becomes
difficult as the amount of bodies rise.

In computer graphics, this is usually done by
streamlining the output data and culling things that
are not in the current view. While the idea of having
a clipping box and using less exact – or none at all –
integration methods for objects outside of it is
interesting, it will not be treated in this document.
Instead, the problem with the costly procedures of
identifying possible collision pairs is considered, the
broad-phase collision detection.

5.1. Sort and Sweep
Ericsson14 suggests sorting the rigid bodies after their
projection on any or all of the principal axes, and
then traversing each axis testing only pairs of objects
that are close to each other. The advantage of this
solution is that object ordering rarely change much
between frames, so sorting becomes relatively cheap
while still allowing us to skip collision tests between
objects with a large distance to each other.

To simplify sorting, one of the principal axes is used
at all times. Ericsson14 mentions that in the case
where only a single axis is used, this can be the
diagonal as a broader projection is possible, but this
makes projection more expensive.

In short, the algorithm works by sorting the rigid
bodies, then adding each body to a temporary list and
processing them, one by one. When a body is
processed, it is checked against all other bodies
currently in the list and bodies not needed anymore
are removed from the list.

The sort and sweep algorithm has a major drawback
– it is weak when clusters of objects are handled
since it cannot cull a lot of collision pairs in these
cases. Also, since slight movement in the bodies can
change the order drastically in such situations, sorting
becomes more expensive. It is therefore advised to
disable the sorting when environments with only a
few tight clusters of bodies are handled.

Fig 4.8: Separation

Fig 5.1: Sort and sweep- when body C is
reached, A is removed from further testing

A

B

C

D

 - 19 -
 Anders E Ekermo 2005-2006
 Gotland University

5.1.1. Sorting Axis

When sorting against a single axis only, it is crucial
that the best axis is used; otherwise the clustering
problem might be encountered unnecessarily.
Consider a collection of 10 rigid bodies lying on a flat
surface. Sorting against the axis perpendicular to the
surface will yield the maximum 45 tests but testing
against the surface axis will cull all of them. A simple
algorithm for determining the axis with the least
clustering is used, as demonstrated in Fig 5.2.

Each axis is divided into a number of cells; each cell
in which a body is projected is then tagged. Although
this algorithm does not take into account different
sizes of bodies, usually, the axis with the most cells
tagged will have the largest spread.

The sorting axis is re-evaluated at a constant interval.
It might seem like a better idea to do this only when
the amount of collision tests rise above a certain
limit, but this would put additional strain on the
system when objects are clustered in both
dimensions, worsening an already existing bottleneck.
Since swapping the axis makes the ordering of the
object completely off, efficiency might be lost in
sorting if only a few bodies are moving, making one
axis slightly better one frame and slightly worse the
next. This is solved by only swapping the axis if the
new one provides a substantial improvement over the
old.

Sorting between frames is done with InsertionSort,
since the algorithm has a very high efficiency for lists
that are almost sorted. The bodies are sorted after
their initial projection value along the axis. A
MergeSort function is also implemented for use when
sorting after axis switch since it handles completely
unordered list faster. It might seem like a better idea
to simply use QuickSort like in the Shock
Propagation (4.2.2.2. Iterations), but MergeSort is
more suited for linked lists and has a better worst-
case efficiency.

5.1.2. Sweeping

Sweeping is done by creating a temporary single-
linked list with the bodies, and adding and processing
each body in the Physics Manager. When a new body
is added, it is tested against each body already in the
list. If the projections on the sort axis overlap, the
bodies are tested for intersection, otherwise, the old
body is removed from the list since no following
bodies can intersect it, they having a larger minimal
projection value.

5.1.3. Threshold

When adding new bodies to the Physics Manager, a
linear search determines their position in the list.
Since there is some overhead to the Sort and Sweep
algorithm, it is not necessary to use it when there are
few bodies in the system, and it can be automatically
switched on and off depending on the body count
and a threshold value.

The bodies are not sorted when the algorithm is
turned on, even though a MergeSort would be able to
create order in a random list faster than
InsertionSort. The reason for this is that the only
time this is really an issue is when sorting is turned on
and off frequently, and in these cases the list will
probably remain somewhat sorted in between.

5.2. Resting
In a normal system with gravity and somewhat
inelastic ground, bodies will sooner or later loose all
their momentum and come to rest. Such bodies
move very little – if at all – between frames, and a lot
of processing can be skipped for them.

Resting bodies in Kodo are tagged with the
RESTING flag, so a body with resting enabled
cannot be used simultaneously in two different
Physics Managers. Additionally, the Physics Manager
Rigid Body list contains two entry points instead of
one, one for active and one for resting bodies. This
way, functions that only concern either resting or
active bodies can be a lot faster since they do not
need to iterate through as many bodies, and do not
have to do a flag comparison for each body.

5.2.1. Kinetic Energy

To prevent bodies from stopping in mid-air or
settling in weird positions, it is not enough to
consider if they are currently immobile, they must be
immobile for an extended period of time. This can be
achieved either by setting a threshold value and either
adding the timesteps of the integration or by simply
counting the frames. A large timestep might force
bodies into rest that should have stayed active if they
had been sampled more times, so counting the
frames is a safer choice.

Fig 5.2: The largest spread is along the axis
with the most cells tagged

 - 20 -
 Anders E Ekermo 2005-2006
 Gotland University

At the end of each frame, the kinetic energy [Wk] (Eq
5.) of each body is compared to the energy the body
would have gained from the applied forces and
torques. If the existing energy is less, the body’s rest
counter is increased, and if the counter reaches the
threshold, the object is tagged as resting and moved
from the “active” list to the “resting” list. If, on the
other hand, the applied energy is less, the rest counter
is zeroed.

The problem with resting is to determine a good
threshold value that will not deactivate bodies that
are accelerating slowly. Theoretically, it should not
have any effect on the stability of the system
(practically, it has a slight effect, see 6.1. Future Work)
so the only real drawback to having a high value is
that a too high value negates the purpose of the
resting concept.

5.2.2. Collisions and Activation

Bodies can be activated, or “unsettled”, manually.
When a resting body is unsettled, it might be
supporting other bodies resting on it, so it is
important that nearby bodies are also unsettled. This
is done in a recursive function that performs
intersection tests with expanded versions of the rigid
body primitives. Since the function changes the list
itself, a temporary list of indices is used to trace
backwards if the current iterator is activated in a
lower level of recursion, but in cases where this is not
enough, it is necessary to start over from the
beginning of the list. An expensive function, but
since objects are activated it does not have to be
called very often.

When two active bodies collide with each other, their
rest lists are synced to the lowest value of the two to
make sure all bodies in contact are inactivated at the

same time. If not, they would just activate each other
instantly after either becomes deactivated. If an active
body collides with an inactive one, the resting body is
simply unsettled.

6. Conclusion
This document has provided a somewhat simplified,
but complete guide to implementing a simple 2D
rigid body physics engine geared specifically for
games, by describing the development of the Kodo
Physics Engine. Simple Euclidian math was
described, as well as primitives and intersection
testing. Newtonian physics with rigid body simulation
using impulses and the propagation model were
described next, and finally, a couple of optimization
methods to improve real-time performance.

As Kodo was written for simulation in two
dimensions rather than three, a lot of operations were
simplified. Some of these are regarding intersection
detection, how objects are found to penetrate, but
the most important one is the step from six to three
DOF, and the simplification of angular velocities
when objects are only allowed to rotate around a
predefined axis.

The Kodo Physics Engine was developed with the
plausibility-before-reality – reasoning used by
Guendelman/Bridson/Fedkiw15. Making it possible
for objects to stack and rest was considered more
important than having correct movement of mobile
objects; as such, the physics integration order
favoured objects that were coming to rest. A stable
system working in reasonably constant time was
required. Instead of solving collisions at their exact
time the entire system was processed only at the end
of the timestep, and instead of disallowing
penetration; a separating function was created to
make the system strive towards a plausible state.

Kodo was created in parts, exposing much of the
inner workings to allow users to customize it to their
needs without having to re-write the library. The
parts in Kodo include the primitive shapes of the
rigid bodies, the rigid bodies themselves and the
Physics Manager, the environment in which the
simulation takes place. The parts are designed to have
few dependencies, and the user may decide where to
use existing parts and where to write new code.

A lot of research has been done in the field of real-
time physics; many different solutions exist to even
the simplest of problems. Kodo as a physics engine
might become useful in a limited field, but as
suggested by Erin Catto23, 25, if physics is to be a core
feature of a game, it is very risky to outsource it.
Even in the case of Rigid Bodies using convex
primitives, this text has shown that several decisions

Wk =
M |v|

2

2

Eq 5: Kinetic Energy

Fig 5.3: The body is only slightly off-balance
so it might not accelerate fast enough to be

considered active

 - 21 -
 Anders E Ekermo 2005-2006
 Gotland University

have to be made to shape the engine. The aim with
Kodo was to produce a general-purpose engine for
games but as the game design spectrum is broadened,
many games may well benefit from having a different
set of priorities in the physics engine. Instead of
being a fully useable library, Kodo might be useful
together with this document as an introduction to
Physical Simulation in real time.

6.1. Future Work
The original intention was to release Kodo to the
public under the LGPL license once it was done. As
mentioned, research has shown that it is not certain
whether Kodo would be very usable as a third-party
library so before this is decided, whether this method
is overly complicated or not needs to be taken into
consideration. Regarding the software itself, there are
several planned improvements following, these will
hopefully be added in the future.

Physics Manager Interface
The physics manager class needs to be converted into
an interface and extended physics managers
providing support for force systems need to be
written to make creating such systems more
streamlined and structured.

Separation Impulses
With Shock Propagation, the system is somewhat
stable but separating bodies without adding velocities
produces movement that is not recognized by the
system. This in turn creates unreliable results in the
rest calculations; Catto25 describes procedures for
using impulses for a lot more things than collisions.
Separation should not be handled as an external “fix”
to the system but should use impulses to force bodies
apart; this would also make stacks more stable faster.

Constraints
Enforcing Constraints on Bodies is a fundamental
feature of any Physics Engine; otherwise two bodies
cannot be connected in any other ways than solid
object compounds. This can usually be solved with
penalty forces and springs but these perform very
poorly with Euler integration. Catto25 describes a
simple method of implementing pin constraints that
could probably fit Kodo very well.

Heightmaps
A more specialised feature, but important for games.
The heightmap – or “heightfield” – is created in 2
dimensions as an array containing height values of
the ground across the simulation area. Since nothing
can exist below the heightmap, relatively simple
collision tests can be used for complex terrain.

Frustum culling
Briefly mentioned in part 5. Optimization, some way of
only working with a subset of currently “interesting”

bodies might prove useful. As it is now, this can only
be achieved by having several different Physics
Managers.

 - 22 -
 Anders E Ekermo 2005-2006
 Gotland University

7. References

1. on Game Design - Andrew Rollings/ Ernest Adams, New Riders Publishing 2003

2. Design Patterns for Interactive Physics - David Wu/ Richard Hilmer,

http://www.pseudointeractive.com/technology-research.php

3. 3D Games – Real-time Rendering and Software Technology Vol 1 - Alan Watt/

Fabio Policarpo, Addison Wesley 2001

4. Havok – http://www.havok.com

5. Ageia PhysX – http://www.ageia.com

6. Open Dynamics Engine – http://www.ode.org

7. Tokamak Game Physics SDK – http://www.tokamakphysics.com

8. Gish – Chroniclogic 2005, http://www.chroniclogic.com/index.htm?gish.htm

9. Ragdoll Kung Fu – Mark Haley 2005, http://ragdollkungfu.beasts.org

10. Experminetal Gameplay Project – http://www.experimentalgameplay.com

11. Microsoft Visual Studio – http://www.msdn.com

12. Borland Command-line Tools –

http://www.borland.com/downloads/download_cbuilder.html

13. GCC, the GNU Compiler Collection – http://gcc.gnu.org/

14. Real-Time Collision Detection – Christer Ericsson, Morgan Kaufmann 2005

15. Nonconvex Rigid Bodies with Stacking – Eran Guendelman/ Robert Bridson/

Ronald Fedkiw, http://graphics.stanford.edu/papers/rigid_bodies-sig03/

16. Rigid Body Dynamics Information – Chris Hecker,

http://www.d6.com/users/checker/dynamics.htm

17. Stable, Robust, and Versatile Multibody Dynamics Animation – Kenny Erleben

http://www.diku.dk/~kenny/thesis.pdf

18. An Introduction to Physically Based Modelling – Andrew Witkin/ David Baraff/

Michael Kass, http://www.cs.cmu.edu/~baraff/pbm/pbm.html

19. Basic Collision Detection and Testing – Raigan Burns/ Mare Sheppard,

http://www.harveycartel.org/metanet/tutorials/tutorialA.html

20. 2D Rigid Body Dynamics – Jaime Del Palacio,

http://www.gametutorials.com/gtstore/c-8-free-tutorials.aspx

21. Simple Intersection Tests for Games – Miguel Gomez,

http://www.gamasutra.com/features/19991018/Gomez_1.htm

 - 23 -
 Anders E Ekermo 2005-2006
 Gotland University

22. A Simple Method for Box-Sphere Intersection Testing – James Arvo,

http://www.ics.uci.edu/~arvo/code/BoxSphereIntersect.c - published in Graphics

Gems Vol 1 – Academic Press 1990 (http://www.graphicsgems.org)

23. Iterative Dynamics with Temporal Coherence – Erin Catto,

http://www.continuousphysics.com/ftp/pub/test/physics/papers/IterativeDynamics.pdf

24. Verlet Integration and Constraints in a Six Degree of Freedom Rigid Body

Physics Simulation – Rick Baltman/ Ron Radeztsky Jr.

http://www.only4gurus.com/v3/preview.asp?resource=7245

25. Fast and Simple Physics using Sequential Impulses – Erin Catto,

http://www.gphysics.com/?page_id=16

26. Atari Games - http://www.atari.com/

URLs checked for validity 2006-05-29

 - 24 -
 Anders E Ekermo 2005-2006
 Gotland University

Appendix A: Projects
These projects were made using the Kodo Physics Engine. Note that not all of them follow the Kodo code
convention. They have all been developed with Microsoft Visual Studio .net 2003, and unlike the Kodo library, they
are not guaranteed to compile with other compilers.

KodoGL
This project is not really a project in itself, but a static library used by other projects to link Kodo functionality with
OpenGL and Windows. It is used to perform common rendering tasks such as creating and handling a window,
loading textures and printing text. It also simplifies rendering of Kodo primitives and rigid bodies.

Destructoooor!
This was the first full project developed with Kodo; it is just a demo
showing some of Kodo’s functionality by allowing the user to drop
primitives in one of four different scenes. The user is also allowed to
tweak most of the input parameters regarding the integration, allowing for
some testing of different situations. It is not meant as a stress test, the
framerate is locked and the integration timestep is constant. The demo
shows how shock propagation greatly improves stability even with few
iterations. It also shows how penetration depth is an issue due to rising
forces and larger stacks, but how this can be countered with more rest-
and collision-iterations.

aPart
As Kodo was written to enhance gaming experience, aPart was written as
an experiment to see how a simple game design could benefit from correct
physics. The game chosen was Breakout, originally developed by Steve
Wozniak and published by Atari Games26. In the original game, a ball
travels across the screen bouncing off the top and the sides. On the screen
are also a number of rectangular blocks, when hit by the ball these
disappear. The player’s mission is to keep the ball from bouncing off the
bottom of the screen and to destroy all the blocks, to do this the player
controls a paddle in the bottom of the screen.

Rollings/Adams1 mentions that when updating classic games, it is
important to keep the things that made the original game good. For this

reason, physics-related features are the only things added and the graphics are kept simple. Blocks, when destroyed,
will fission in different ways and fall off the screen as opposed to simply disappearing. In addition, certain special
blocks have parts that can be caught by the player, some attach to the paddle and some stick for a second and then fire
straight up, destroying any blocks immediately above the player. Yet another kind of block fissions into solid parts that
function as additional balls.

Technically, the original Breakout was very easy to implement due to the access to occurred collisions, compound
objects and flag-based collision detection. The complexity of the code in aPart comes from the generation of block
parts and the added features. It should be mentioned that aPart goes against the recommendation of not using the
KRB_RESTING – flag for gameplay purposes (see 4.1.6. System Flags), but since no other forces can affect the bodies
than those putting them into unrest, and since resting is not otherwise used in the application, an exception can be
made.

Design-wise, aPart adds power-ups, obstructions and eyecandy to the breakout concept, as well as unruly balls and
paddles. These add to the gameplay but increase the complexity of the game, the original concept is relatively
untouched, with one notable exception. Since everything is controlled by the physics engine, the ball might sometimes
come to a halt in mid-air if no external forces are acting on it. To solve this problem, a very small gravitational force is
added to it, but this drastically changes the player’s way of predicting the ball’s path. If aPart was to be extended from
an experiment into a full game, a better solution to this problem should be thought of.

Fig A.1: Destructoooor!

Fig A.2: aPart

 - 25 -
 Anders E Ekermo 2005-2006
 Gotland University

Appendix B: Signs and Abbreviations

AABB Axis-Aligned Bounding Box 3.1.2.

DOF Degrees of Freedom 4.1.2.

OBB Oriented Bounding Box 3.1.3.

ODE Ordinary Differential Equation 4.2.2.4.

SAT Separating Axis Theorem 3.2.1.

[a] Linear Acceleration 4.1.3.

[ε] Coefficient of Restitution 4.3.3.

[F] Force 4.1.3.

[I] Rotational Inertia 4.1.3.

[J] Impulse 4.3.1.

[L] Angular Momentum 4.1.1.

[µ] Coefficient of Friction 4.3.3.

[M] Mass 4.1.1.

[n] Normal 4.3.1.

[P] Linear Momentum 4.1.1.

[R] Orientation 4.1.1.

[r] Local Position 4.1.1.

[τ] Torque 4.1.3.

[v] Linear Velocity 4.1.1.

[ω] Angular Velocity 4.1.1.

[ώ] Angular Acceleration 4.1.3.

[Wk] Kinetic Energy 5.2.1.

[X] Position 4.1.1.

